Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117309    DOI: 10.1088/1674-1056/21/11/117309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions

Zhu Guo-Bao
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism. We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in Kane-Mele model with various structures. When both intrinsic and Rashba spin-orbit interactions are present, their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level. When Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling, a weak kink in the conductance appears. The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances. When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling, the divergence becomes more obvious.
Keywords:  graphene      spin-orbit interaction      Green's function theory  
Received:  30 March 2012      Revised:  04 June 2012      Published:  01 October 2012
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.61.Wp (Fullerenes and related materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10934010), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB921502 and 2012CB821305).
Corresponding Authors:  Zhu Guo-Bao     E-mail:  zhuguobao@gmail.com

Cite this article: 

Zhu Guo-Bao Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions 2012 Chin. Phys. B 21 117309

[1] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[2] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[3] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[4] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[5] Kimura T and Otani Y 2007 Phys. Rev. Lett. 99 196604
[6] Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nature Phys. 6 448
[7] Berry M V 1984 Proc. R. Soc. London Ser. B 392 45
[8] Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915
[9] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Meakawa S and Saitoh E 2008 Nature 455 778
[10] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nature Mater. 9 898
[11] Xiao D, Yao Y, Fang Z and Niu Q 2006 Phys. Rev. Lett. 97 026603
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[14] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[15] Dedkov Y S, Fonin M, Rüdiger U and Laubscha C 2008 Phys. Rev. Lett. 100 107602
[16] Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[17] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[18] Imura K, Kuramoto Y and Nomura K 2009 Phys. Rev. B 80 085119
[19] Yamakage A, Imura K, Cayssol J and Kuramoto Y 2011 Phys. Rev. B 83 125401
[20] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602
[21] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103
[22] Kovalev A A, Tserkovnyak Y, Vyborny K and Sinova J 2009 Phys. Rev. B 79 195129
[23] Kovalev A A, Sinova J and Tserkovnyak Y 2010 Phys. Rev. Lett. 105 036601
[24] Smrcka L and Streda P 1977 J. Phys. C 10 2153
[25] Dyrdal A, Dugaev V K and Barnas J 2009 Phys. Rev. B 80 155444
[1] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[2] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[3] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[6] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[7] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[8] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[9] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[10] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[11] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[12] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[13] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[14] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[15] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
No Suggested Reading articles found!