Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107803    DOI: 10.1088/1674-1056/21/10/107803

Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy

Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Zhang Zhong-Liang, Wang Bo
School of Physics and Key Laboratory of Nuclear Solid State Physics, Wuhan University, Wuhan 430072, China
Abstract  The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite (OREC) content and temperature in a range from 160 K to 300 K. According to the variation of ortho-positronium (o-Ps) lifetime with temperature, the glassy transition temperature is determined. The continuous maximum entropy lifetime (MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution. The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher (VTF) and Williams-Landel-Ferry (WLF) equations, implying a free-volume transport mechanism. A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation. It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte, which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.
Keywords:  positron      free volume      polymeric electrolyte      ionic conduction  
Received:  04 March 2012      Revised:  10 April 2012      Published:  01 September 2012
PACS:  78.70.Bj (Positron annihilation)  
  72.80.Tm (Composite materials)  
  82.45.Gj (Electrolytes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175134).
Corresponding Authors:  Wang Bo     E-mail:

Cite this article: 

Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Zhang Zhong-Liang, Wang Bo Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy 2012 Chin. Phys. B 21 107803

[1] Arico A S, Bruce P, Scrosati B, Tarascon J M and van Schalkwijk W 2005 Nat. Mater. 4 366
[2] Fenton D E, Parker J M and Wright P V 1973 Polymer 14 589
[3] Wright P V 1975 Br. Polym. J. 7 319
[4] Wieczorek W and Siekierski M 1994 J. Appl. Phys. 76 2220
[5] Croce F, Appetecchi G B, Persi L and Scrosati B 1998 Nature 394 456
[6] Xie J, Duan R G, Han Y and Kerr J B 2004 Solid State Ionics 175 755
[7] Li Z R, Meng Q A, Guan D H and Wang G 1999 Acta Phys. Sin 48 1175 (in Chinese)
[8] Peng Z L, Wang B, Li S Q, Wang S J, Liu H and Xie H Q 1994 Phys. Lett. A 194 228
[9] Peng Z L, Wang B, Li S Q and Wang S J 1995 J. Appl. Phys. 77 334
[10] Bamford D, Dlubek G, Reiche A, Alam M A, Meyer W, Galvosas P and Rittig F 2001 J. Chem. Phys. 115 7260
[11] Awad S, Chen H, Chen G, Gu X, Lee J L, Abdel-Hady E E and Jean Y C 2011 Macromolecules 44 29
[12] Zhu Y, Wang B, Gong W, Kong L and Jia Q 2006 Macromolecules 39 9441
[13] Wang B, Peng Z L, Wu W, Li S Q, Wang S J, Liu H and Xie H Q 1996 Acta Phys. Sin. 45 153 (in Chinese)
[14] Kirkegaard P, Eldrup M, Mogensen O E and Pedersen N J 1981 Comput. Phys. Commun. 23 307
[15] Tao S J 1972 J. Chem. Phys. 56 5499
[16] Nakanishi H, Jean Y C and Wang S J 1987 Positron Annihilation Studies of Fluids (Singapore: World Scientific) p. 292
[17] Chen H W and Chang F C 2001 Polymer 42 9763
[18] Ratna D, Divekar S, Patchaiappan S, Samui A B and Chakraborty B C 2007 Polymer International 56 900
[19] Bendler J T, Fontanella J J, Shlesinger M F and Wintersgill M C 2003 Electrochim. Acta 48 2267
[20] Ma Y Z, Pang L L, Zhu Y B, Wang Z G and Shen T L 2011 Chin. Phys. B 20 078104
[21] Zhou W, Wang J, Gong Z, Gong J, Qi N and Wang B 2009 Appl. Phys. Lett. 94 021904
[22] Winberg P, DeSitter K, Dotremont C, Mullens S, Vankelecom I F J and Maurer F H J 2005 Macromolecules 38 3776
[23] Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P and Hill A J 2002 Science 296 519
[24] Wieczorek W, Zalewska A, Raducha D, Florjańczyk Z, Stevens J R, Ferry A and Jacobsson P 1996 Macromolecules 29 143
[25] Hu L, Tang Z and Zhang Z 2007 Journal of Power Sources 166 226
[26] Stephan A M, Kumar T P, Kulandainathan M A and Lakshmi N A 2009 J. Phys. Chem. B 113 1963
[27] Hill A J, Zipper M D, Tant M R, Stack G M, Jordan T C and Shultz A R 1996 J. Phys.: Conden. Matter 8 3811
[28] Zhou W, Wang B, Zheng Y, Zhu Y, Wang J and Qi N 2008 Chemphyschem 9 1046
[29] Gong W, Mai Y, Zhou Y, Qi N, Wang B and Yan D 2005 Macromolecules 38 9644
[30] Wang J, Gong J, Gong Z, Yan X, Gao S and Wang B 2011 Acta Phys. Sin. 60 127803 (in Chinese)
[31] Fergus J W 2010 Journal of Power Sources 195 4554
[32] Zhou G B, Khan I M and Smid J 1993 Macromolecules 26 2202
[33] Xu H S and Yang C Z 1995 J. Polym. Sci. B: Polym. Phys. 33 745
[34] Companik J E and Bidstrup S A 1994 Polymer 35 4823
[35] Wright P V 1989 J. Macromol. Sci. Chem. A 26 519
[36] Watanabe M, Sanui K, Ogata N, Kobayashi T and Ohtaki Z 1985 J. Appl. Phys. 57 123
[1] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[2] Dynamical effects of switching a super-critical well potential on pair creation from a vacuum
Qiang Wang(王强), Qin-Zhi Xia(夏勤智), Jie Liu(刘杰), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(8): 080302.
[3] Low-temperature synthesis of apatite-type La9.33Ge6O26 as electrolytes with high conductivity
Guang-Chao Yin(尹广超), Guo-Dong Zhao(赵国栋), Hong Yin(殷红), Fu-Chao Jia(贾福超), Qiang Jing(景强), Sheng-Gui Fu(付圣贵), Mei-Ling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(4): 048201.
[4] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[5] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[6] Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam
Ridip Sarma, Amar P Misra, Nirab C Adhikary. Chin. Phys. B, 2018, 27(10): 105207.
[7] Plasma-screening effects on positronium formation
Jia Ma(马佳), Yuan-Cheng Wang(王远成), Ya-Jun Zhou(周雅君), Heng Wang(王珩). Chin. Phys. B, 2018, 27(1): 013401.
[8] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
[9] Positronium formation for positron scattering from metastable hydrogen
Lin Lin(林蔺), Hong-Nian Wang(汪宏年), Li-Guang Jiao(焦利光). Chin. Phys. B, 2017, 26(3): 033401.
[10] Enhanced electron-positron pair production by frequency chirping in one- and two-color laser pulse fields
Nuriman Abdukerim, Zi-Liang Li(李子良), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(2): 020301.
[11] Optical potential approach for positron scattering by metastable 23S state of helium
Xi-Gang Wu(吴锡刚), Yong-Jun Cheng(程勇军), Fang Liu(刘芳), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2017, 26(2): 023401.
[12] Differential cross sections of positron—hydrogen collisions
Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(7): 073401.
[13] Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas
M M Hasan, M A Hossen, A Rafat, A A Mamun. Chin. Phys. B, 2016, 25(10): 105203.
[14] Dynamics of laser beams in inhomogeneous electron—positron—ion plasmas
Cheng Li-Hong, Tang Rong-An, Du Hong-E, Xue Ju-Kui. Chin. Phys. B, 2015, 24(7): 075201.
[15] Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles
Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan. Chin. Phys. B, 2015, 24(4): 046102.
No Suggested Reading articles found!