Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106101    DOI: 10.1088/1674-1056/21/10/106101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds

Zhang He (张贺)a b, Luo Jun (骆军)b, Zhu Hang-Tian (朱航天)b, Liu Quan-Lin (刘泉林)a, Liang Jing-Kui (梁敬魁)b, Li Jing-Bo (李静波)b, Liu Guang-Yao (刘广耀)b
a State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Polycrystalline p-type Ag0.9Sb1.1-xMnxTe2.05(x=0.05, 0.10, and 0.20) compounds have been prepared by a combined process of melt-quenching and spark plasma sintering. The sample composition of Ag0.9Sb1.1-xMnxTe2.05 has been specially designed in order to achieve the doping effect by replacing part of Sb with Mn and to present the uniformly dispersed Ag2Te phase in the matrix by adding insufficient Te, which is beneficial for optimizing the electrical transport properties and enhancing the phonon scattering effect. All the samples have the NaCl-type structure according to our X-ray powder diffraction analysis. After the treatment of spark plasma sintering, only the sample with x = 0.20 has a small amount of MnTe2 impurities. The thermal analysis indicates that a tiny amount of Ag2Te phase exists in all these samples. The presence of the MnTe2 impurity with high resistance and high thermal conductivity leads to the deteriorative thermoelectric performance of the sample with x=0.20 due to the decreased electrical transport properties and the increased thermal conductivity. In contrast, the sample with x=0.10 exhibits enhanced thermoeletric properties due to the Mn-doping effect. A dimensionless thermoelectric figure of merit of 1.2 is attained for the sample with x=0.10 at 573 K, showing promising thermoelectric properties in the medium temperature range.
Keywords:  AgSbTe2      phase stability      crystal structure      thermoelectric properties  
Received:  05 April 2012      Revised:  19 June 2012      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  64.60.My (Metastable phases)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11144002 and 51172276).
Corresponding Authors:  Luo Jun     E-mail:  jluo@aphy.iphy.ac.cn

Cite this article: 

Zhang He (张贺), Luo Jun (骆军), Zhu Hang-Tian (朱航天), Liu Quan-Lin (刘泉林), Liang Jing-Kui (梁敬魁), Li Jing-Bo (李静波), Liu Guang-Yao (刘广耀) Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds 2012 Chin. Phys. B 21 106101

[1] Wood C 1988 Rep. Prog. Phys. 51 459
[2] Tritt T M 1999 Science 283 804
[3] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[4] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher S, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[5] Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (Boca Raton, FL: CRC/Taylor and Francis) p. 1
[6] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[7] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[8] Bell L E 2008 Science 321 1457
[9] Biswas K, He J Q, Zhang Q C, Wang G Y, Uher C, Dravid V P and Kanatzidis M G 2011 Nat. Chem. 3 160
[10] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X W, Wang D Z, Muto A, McEnaney K, Chiesa M, Ren Z F and Chen G 2011 Nat. Mater. 10 532
[11] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
[12] Morelli D T, Jovovic V and Heremans J P 2008 Phys. Rev. Lett. 101 035901
[13] Wang H, Li J F, Nan C W, Zhou M, Liu W S, Zhang B P and Kita T 2006 Appl. Phys. Lett. 88 092104
[14] Jovovic V and Heremans J P 2008 Phys. Rev. B 77 245204
[15] Wojciechowski K T and Schmidt M 2009 Phys. Rev. B 79 184202
[16] Ye L H, Hoang K, Freeman A J, Mahanti S D, He J, Tritt T M and Kanatzidis M G 2008 Phys. Rev. B 77 245203
[17] Du B L, Li H, Xu J J, Tang X F and Uher C 2010 Chem. Mater. 22 5521
[18] Yang S H, Zhu T J, Sun T, He J, Zhang S N and Zhao X B 2008 Nanotechnology 19 245707
[19] Marin R M, Brun G and Tedenac J C 1985 J. Mater. Sci. 20 730
[20] Petzow G and Effenberg G 1988 Ternary Alloys Vol. 2 (Weinheim: Wiley-VCH Verlag) pp. 552-555
[21] McHugh J P, Tiller W A, Haszko S E and Wernick J H 1962 J. Appl. Phys. 32 1785
[22] Majer R G 1963 Zeitschrift fur Metallkunde 54 311
[23] Ayralmarin R M, Brun G, Maurin M and Tedenac J C 1990 Eur. J. Solid State Inorg. Chem. 27 747
[24] Zhang S N, Zhu T J, Yang S H, Yu C and Zhao X B 2010 J. Alloys Compd. 499 215
[25] Wang H, Li J F, Zou M M and Sui T 2008 Appl. Phys. Lett. 93 202106
[26] Sugar J D and Medlin D L 2009 J. Alloys Compd. 478 75
[27] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K and Rao G H 2012 Acta Phys. Sin. 61 086101 (in Chinese)
[28] Avdeev B V, Yu P and Krasheninin 1974 Sov. Phys. Solid State 15 2028
[29] Cahill D G, Watson S K and Pohl R O 1962 Phys. Rev. B 46 6131
[30] Johnston W D, Miller R C and Damon G H 1965 J. Less-Common Met. 8 272
[31] Zhao X B, Ji X H, Zhang T H, Zhu T J, Tu J P and Zhang X B 2008 Appl. Phys. Lett. 86 062111
[32] Tang X, Xie W J, Li H, Zhao W Y, Zhang Q J and Niino M 2007 Appl. Phys. Lett. 90 012102
[33] Im J T, Hartwig K T and Sharp J 2004 Acta Mater. 52 49
[34] Jiang J, Chen L D, Bai S Q, Yao Q and Wang Q 2005 Mater. Sci. Eng. B 117 314
[35] Ma Y, Hao Q, Poudel B, Lan Y C, Yu B, Wang D Z, Chen G and Ren Z F 2008 Nano. Lett. 8 2580
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[3] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[7] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[8] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[11] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[12] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[13] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
No Suggested Reading articles found!