Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014203    DOI: 10.1088/1674-1056/21/1/014203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Quantum correlations between two non-interacting atoms under the influence of a thermal environment

Hu Yao-Hua, Wang Jun-Qiang
College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China
Abstract  By considering a double Jaynes-Cummings model, we investigate the dynamics of quantum correlations, such as the quantum discord and the entanglement, for two atoms in their respective noisy environments, and study the effect of the purity and the cavity temperature on the quantum correlations. The results show that the entanglement suffers sudden death and revival, however the quantum discord can still reveal the quantum correlations between the two atoms in the region where the entanglement is zero. Moreover, when the temperature of each cavity is high the entanglement dies out in a short time, but the quantum discord still survives for quite a long time. It means that the quantum discord is more resistant to environmental disturbance than the entanglement at higher temperatures.
Keywords:  double Jaynes-Cummings model      entanglement      quantum discord     
Received:  27 May 2011      Published:  20 January 2012
PACS:  42.50.-p (Quantum optics)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978011 and 10905028), the Program for Science and Technology Department of Henan Province, China (Grant No. 102300410050), and the Cultivation Fund of Luoyang Normal Colle

Cite this article: 

Hu Yao-Hua, Wang Jun-Qiang Quantum correlations between two non-interacting atoms under the influence of a thermal environment 2012 Chin. Phys. B 21 014203

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Lettner M, Mücke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Dürr S and Rempe G 2011 Phys. Rev. Lett. 106 210503
[4] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[5] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[6] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[7] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[8] Datta A 2009 Phys. Rev. A 80 052304
[9] Sarandy M S 2009 Phys. Rev. A 80 022108
[10] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[11] Luo S and Sun W 2010 Phys. Rev. A 82 012338
[12] Madhok V and Datta A 2010 arXiv:1008.4135
[13] Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327
[14] Galve F, Giorgi G L and Zambrini R 2011 Phys. Rev. A 83 012102
[15] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[16] Streltsov A, Kampermann H and Bruss D 2011 Phys. Rev. Lett. 106 160401
[17] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[18] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[19] Chakrabarty I, Agrawal P and Pati A K 2010 arXiv: 1006.5784
[20] Yönac M and Eberly J H 2008 Opt. Lett. 33 270
[21] Yönac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[22] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[23] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Riberio P H and Davidovich L 2007 Science 316 579
[24] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[25] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[26] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[27] Liu B Q, Shao B and Zou J 2010 Phys. Rev. A 82 062119
[28] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[29] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[30] Kim M S, Lee J, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101
[31] Hill S 1997 Phys. Rev. Lett. 78 5022
[32] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[33] Vedral V 2002 Rev. Mod. Phys. 74 197
[34] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[35] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[36] Werner R F 1989 Phys. Rev. A 40 4277
[1] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[9] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[10] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁)1,†, Xiangguo Meng(孟祥国)2,‡, and Xiaoyan Zhang(张晓燕)1,2. Chin. Phys. B, 2020, 29(12): 124213.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), Yin Zhong(钟寅). Chin. Phys. B, 2020, 29(10): 107301.
[14] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[15] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
No Suggested Reading articles found!