Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097304    DOI: 10.1088/1674-1056/20/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An improvement to computational efficiency of the drain current model for double-gate MOSFET

Wu Wena, Zhao Weia, Zhou Xing-Yeb, Zhang Jianb, Zhou Zhi-Zeb, Zhang Li-Ningb, Ma Chen-Yueb, Zhang Xingb
a Peking University Shenzhen SOC Key Laboratory, PKU-HKUST Shenzhen Institution, Shenzhen 518057, China; b TSRC, Institute of Microelectronics, School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  As a connection between the process and the circuit design, the device model is greatly desired for emerging devices, such as the double-gate MOSFET. Time efficiency is one of the most important requirements for device modeling. In this paper, an improvement to the computational efficiency of the drain current model for double-gate MOSFETs is extended, and different calculation methods are compared and discussed. The results show that the calculation speed of the improved model is substantially enhanced. A two-dimensional device simulation is performed to verify the improved model. Furthermore, the model is implemented into the HSPICE circuit simulator in Verilog-A for practical application.
Keywords:  MOSFET      computational efficiency      compact model      double-gate     
Received:  18 January 2011      Published:  15 September 2011
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  61.44.Br (Quasicrystals)  

Cite this article: 

Zhou Xing-Ye, Zhang Jian, Zhou Zhi-Ze, Zhang Li-Ning, Ma Chen-Yue, Wu Wen, Zhao Wei, Zhang Xing An improvement to computational efficiency of the drain current model for double-gate MOSFET 2011 Chin. Phys. B 20 097304

[1] Taur Y, Buchanan D A, Chen W, Frank D J, Ismail K E, Lo S H, Sai-halasz G A, Viswanathan R G, Wann H C, Wind S J and Wong H S 1997 Proc. IEEE 85 486
[2] Balestra F, Cristoloveanu S, Benachir M, Brini J and Elewa T 1987 IEEE Electron Device Lett. ED-8 410
[3] Frank D J, Laux S E and Solomon M V 1992 Technical Digest of the International Electron Devices Meeting, December 13-16, 1992, San Francisco, USA, p. 553
[4] Taur Y 2000 IEEE Electron Device Lett. 21 245
[5] Zhou X, Zhu Z M, Rustagi S C, See G H, Zhu G J, Lin S H, Wei C Q and Lim G H 2008 IEEE Trans. Electron Devices 55 616
[6] Sallese J M, Krummenacher F, Pr'egaldiny F, Lallement C, Roy A and Enz C 2005 Solid-State Electron. 49 485
[7] Reyboz M, Rozeau O, Poiroux T, Martin P and Jomaah J 2006 Solid-State Electron. 50 1276
[8] Ortize-Conde A and Garcia-Sanchez F J 2006 Solid-State Electron. 50 1796
[9] Lu H X and Taur Y 2006 IEEE Trans. Electron Devices 53 1161
[10] Shangguan W Z, Zhou X, Chandrasekaran K, Zhu Z M, Rustagi S C, Chiah S B and See G H 2007 IEEE Trans. Electron Devices 54 169
[11] Liu F, He J, Fu Y, Hu J, Bian W, Song Y, Zhang X and Chan M 2008 IEEE Trans. Electron Devices 55 816
[12] Dessai G and Gildenblat G 2010 Solid-State Electron. 54 382
[13] Sahoo A, Thakur P K and Mahapatra S 2010 IEEE Trans. Electron Devices 57 632
[14] Ortiz-Conde A, Garc'hia-S'anchez F J, Muci J, Malobabic S and Liou J J 2007 IEEE Trans. Electron Devices 54 131
[15] Zhou X Y, Zhou Z Z, Zhang J, Zhang L N, Ma C Y, He J and Zhang X 2010 Solid State Electron. 54 1444
[16] Zhou X Y, Zhang J, Zhou Z Z, Zhang L N, Ma C Y, Wu W, Zhao W and Zhang X 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, November 1-4, 2010, Shanghai, China, p. 1874
[17] TCAD Sentaurus Device User's Manual 2007 Synopsys, Mountain View, CA
[18] MATLABtextcircledfootnotesize R Online Reference Manual, available at www.mathworks.com
[1] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[2] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[3] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[4] Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET
Jun Wang(王军), Xiao-Mei Peng(彭小梅), Zhi-Jun Liu(刘志军), Lin Wang(王林), Zhen Luo(罗震), Dan-Dan Wang(王丹丹). Chin. Phys. B, 2018, 27(2): 027201.
[5] Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement
Norazlina M S, Dheepan Chakravarthii M K, Shanmugan S, Mutharasu D, Shahrom Mahmud. Chin. Phys. B, 2017, 26(9): 098901.
[6] Horizontal InAs nanowire transistors grown on patterned silicon-on-insulator substrate
Wang Zhang(张望), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Qi-Feng Lv(吕奇峰), Xiang-Hai Ji(季祥海), Tao Yang(杨涛), Fu-Hua Yang(杨富华). Chin. Phys. B, 2017, 26(8): 088101.
[7] Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(4): 047306.
[8] A review for compact model of graphene field-effect transistors
Nianduan Lu(卢年端), Lingfei Wang(汪令飞), Ling Li(李泠), Ming Liu(刘明). Chin. Phys. B, 2017, 26(3): 036804.
[9] Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal-oxide-semiconductor field-effect transistors
Yan-Bing Xu(徐雁冰), Hong-Guan Yang(杨红官). Chin. Phys. B, 2017, 26(12): 127302.
[10] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
[11] A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET
Shweta Tripathi. Chin. Phys. B, 2016, 25(10): 108503.
[12] Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap
Mohsen Mahmoudi, Zahra Ahangari, Morteza Fathipour. Chin. Phys. B, 2016, 25(1): 018501.
[13] Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor
Chen Hai-Feng, Guo Li-Xin, Zheng Pu-Yang, Dong Zhao, Zhang Qian. Chin. Phys. B, 2015, 24(7): 078502.
[14] Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs
Morteza Charmi. Chin. Phys. B, 2015, 24(4): 047302.
[15] Utilizing a shallow trench isolation parasitic transistor to characterize the total ionizing dose effect of partially-depleted silicon-on-insulator input/output n-MOSFETs
Peng Chao, Hu Zhi-Yuan, Ning Bing-Xu, Huang Hui-Xiang, Fan Shuang, Zhang Zheng-Xuan, Bi Da-Wei, En Yun-Fei. Chin. Phys. B, 2014, 23(9): 090702.
No Suggested Reading articles found!