Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090304    DOI: 10.1088/1674-1056/20/9/090304
GENERAL Prev   Next  

Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator

Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利)
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter of Ministry of Education, Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state Λ-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.
Keywords:  cavity quantum electrodynamics      entangled states      quantum information transfer  
Received:  10 February 2011      Revised:  24 March 2011      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.Hk (Quantum communication)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Cite this article: 

Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利) Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator 2011 Chin. Phys. B 20 090304

[1] Bell J S 1964 Physics 1 195
[2] Nielsen M A and Chuang I L 2001 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Shor P W 1997 SIAM J. Comput. 26 1484
[4] Grover K 1997 Phys. Rev. Lett. 79 325
[5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Kimble H J 1998 Phys. Scr. T76 127
[8] Mabuchi H and Doherty A C 2002 Science 298 1372
[9] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[10] Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
[11] Marr C, Beige A and Rempe G 2003 Phys. Rev. A 68 033817
[12] Amniat-Talab M, Gu'erin S and Jauslin H R 2005 Phys. Rev. A 72 012339
[13] Li P B, Gu Y, Gong Q H and Guo G C 2009 Chin. Phys. Lett. 26 030301
[14] Zhang S L, Zou X B, Yang S, Li C F, Jin C H and Guo G C 2009 Phys. Rev. A 80 062320
[15] Li J Q, Chen G and Liang J Q 2008 Phys. Rev. A 77 014304
[16] Helmer F and Marquardt F 2009 Phys. Rev. A 79 052328
[17] Feng X L, Wang Z, Wu C, Kwek L C, Lai C H and Oh C H 2007 Phys. Rev. A 75 052312
[18] Li P B, Gu Y, Gong Q H and Guo G C 2009 Eur. Phys. J. D 55 205
[19] Li P B and Li F L 2011 Opt. Express 19 1207
[20] Xiang S H, Shao B and Song K H 2009 Commun. Theor. Phys. 52 835
[21] Wu C W, Han Y, Deng Z J, Liang L M and Li C Z 2010 Chin. Phys. B 19 010313
[22] Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 034207
[23] Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
[24] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[25] James D F V 2000 Fortschr. Phys. 48 823
[26] Li P B, Gu Y, Gong Q H and Guo G C 2009 Phys. Rev. A 79, 042339
[27] Chen J M, Liang L M, Li C Z and Deng Z J 2010 Commun. Theor. Phys. 54 107
[28] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[1] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[2] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[3] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[6] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[7] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[8] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[9] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[10] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[11] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[12] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[13] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng (吴奇成), Wen Jing-Ji (文晶姬), Ji Xin (计新), Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[14] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[15] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
No Suggested Reading articles found!