Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047201    DOI: 10.1088/1674-1056/20/4/047201

Surface plasmon–polaritons on ultrathin metal films

Tian Yinga, Zhang Junb, Shao Le-Xib, Quan Junc
a Center of Liberal Education, Zhanjiang Normal University, Zhanjiang 524048, China; b School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China; c School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China;School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
Abstract  We discuss the surface plasmon–polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons.
Keywords:  surface plasmon-polariton      linear response theory      dispersion relation      ultrathin metal film  
Received:  19 October 2010      Revised:  19 December 2010      Accepted manuscript online: 
PACS:  72.30.Mf  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the Cultivation of Innovative Talents of the Colleges and Universities of Guangdong Province of China (Grant No. LYM10098).

Cite this article: 

Quan Jun, Tian Ying, Zhang Jun, Shao Le-Xi Surface plasmon–polaritons on ultrathin metal films 2011 Chin. Phys. B 20 047201

[1] Economou E N 1969 Phys. Rev. bf182 2
[2] Ngai K L, Economou E N and Cohen M H 1970 Phys. Rev. Lett. 24 61
[3] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[4] Chiang T C 2000 Surf. Sci. Rep. 39 181
[5] Moskovits M 1985 Rev. Mod. Phys. 57 783
[6] Echenique P M, Berndt R, Chulkov E V, Fauster Th, Goldmann A and Höfer U 2004 Surf. Sci. Rep. 52 219
[7] Ritchie R H 1957 Phys. Rev. 106 874
[8] Bennett A J 1970 Phys. Rev. B 1 203
[9] Schwartz C and Schaich W L 1982 Phys. Rev. B 26 7008
[10] Dharamvir K, Singla B, Pathak K N and Paranjape V V 1993 Phys. Rev. B 48 12 330
[11] Tsuei K D, Plummer E W and Feibelman P J 1989 Phys. Rev. Lett. 63 2256
[12] Tsuei K D, Plummer E W, Liebsch A, Kempa K and Bakshi P 1990 Phys. Rev. Lett. 64 44
[13] Eguiluz A G 1983 Phys. Rev. Lett. 51 1907
[14] Eguiluz A G 1985 Phys. Rev. B 31 3303
[15] Zangwill A and Soven P 1980 Phys. Rev. A 21 1561
[16] Stott M J and Zaremba E 1980 Phys. Rev. A 21 12
[17] Dobson J F 1992 Phys. Rev. B 46 10163
[18] Schaich W L and Dobson J F 1994 Phys. Rev. B 49 14700
[19] Liu B C, Yu L, Lu Z X and Zhang K 2010 Chin. Phys. B 19 097303
[20] Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N and Bai L H 2010 Chin. Phys. B 19 027301
[21] Lee H J and Cho S H 1997 J. Plasma Phys. 58 409
[22] Rocca M 1995 Surf. Sci. Rep. 22 1
[1] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
[2] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[3] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[4] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[5] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[6] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[7] Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions
Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军). Chin. Phys. B, 2016, 25(10): 108201.
[8] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu,Zhang He-Ming,Gao Xiang,Wang Bin,Zhou Chun-Yu. Chin. Phys. B, 2012, 21(5): 057103.
[9] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian,Shahram Nikjo. Chin. Phys. B, 2012, 21(5): 057306.
[10] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng,Wang Shan-Jin,Chen Jian-Min,Shi Yu-Ren,Lin Mai-Mai,Duan Wen-Shan. Chin. Phys. B, 2012, 21(5): 055202.
[11] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke,Chen Ji-Sheng. Chin. Phys. B, 2012, 21(3): 030309.
[12] Dispersion compensation for an ultrathin metal film using LCD–CCD system
Dai Yu, Zhang Jian-Xu. Chin. Phys. B, 2012, 21(10): 104203.
[13] Dynamic electron transport theory for multiprobe mesoscopic structures
Quan Jun, Tian Ying, Zhang Jun, Shao Le-Xi. Chin. Phys. B, 2011, 20(7): 077201.
[14] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can, Yu Li, Lu Zhi-Xin. Chin. Phys. B, 2011, 20(3): 037302.
[15] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong, Duan Wen-Shan, Chen Jian-Min, Wang Shan-Jin. Chin. Phys. B, 2011, 20(2): 025203.
No Suggested Reading articles found!