Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040301    DOI: 10.1088/1674-1056/20/4/040301
GENERAL Prev   Next  

Chaotic solutions of (2+1)-dimensional Broek–Kaup equation with variable coefficients

Yang Zheng, Ma Song-Hua, Fang Jian-Ping
College of Mathematics and Physics, Zhejiang Lishui University, Lishui 323000, China
Abstract  In this paper, an improved projective approach is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Broek-Kaup equation with variable coefficients (VCBK). Based on the derived solitary wave solution and using a known chaotic system, some novel chaotic solutions are investigated.
Keywords:  VCBK equation      chaotic solutions      solitary wave solution      a known chaotic system  
Received:  07 October 2010      Revised:  29 October 2010      Published:  15 April 2011
PACS:  03.40.Kf  
  03.65.Ge (Solutions of wave equations: bound states)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y6100257 and Y6090681) and the Natural Science Foundation of Zhejiang Lishui University (Grant Nos. KZ09005 and KY08003).

Cite this article: 

Yang Zheng, Ma Song-Hua, Fang Jian-Ping Chaotic solutions of (2+1)-dimensional Broek–Kaup equation with variable coefficients 2011 Chin. Phys. B 20 040301

[1] Lou S Y 1996 Commun. Theor. Phys. (Beijing, China) 26 487
[2] Lai D W C and Chow K W 2001 J. Phys. Soc. Jpn. 70 666
[3] Zhang J F 2002 Commun. Theor. Phys. (Beijing, China) 37 277
[4] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[5] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. 48 385
[6] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[7] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)
[8] Li B Q, Ma Y L and Xu M B 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[9] Ma Y L, Li B Q and Sun J Z 2009 Acta Phys. Sin. 58 7042 (in Chinese)
[10] Kivshar Y S and Melomend B A 1989 Rev. Mod. Phys. 61 765
[11] Stegemant G I and Segev M 1999 Science 286 1518
[12] Gollub J P and Gross M C 2000 Nature 404 710
[13] Pan W Z, Song X J and Yu J 2010 Chin. Phys. B 19 030203
[14] Li Z F and Ruan H Y 2010 Chin. Phys. B 19 040201
[15] Fang J P and Zheng C L 2005 Acta Phys. Sin. 54 670 (in Chinese)
[16] Ma S H, Fang J P and Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)
[17] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese)
[18] Ma S H, Fang J P, Hong B H and Zheng C L 2009 Chaos, Solitons and Fractals 40 1352
[19] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. B 17 2767
[20] Ma S H and Fang J P 2009 Z. Naturforsch 64a 37
[21] Conte R and Musette M 1992 J. Phys. A: Math. Gen. 25 5609
[22] Fu Z T, Liu S D and Liu S K 2004 Chaos, Solitons and Fractals 20 301
[23] Wu C L and Guo Y X 2010 Acta Phys. Sin. 59 5293 (in Chinese) endfootnotesize
[1] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[2] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[3] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong, Li Hua-Mei. Chin. Phys. B, 2013, 22(4): 040310.
[4] Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system
Lei Yan, Ma Song-Hua, Fang Jian-Ping. Chin. Phys. B, 2013, 22(1): 010506.
[5] Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates
Yao Shu-Fang, Li Qiu-Yan, Li Zai-Dong. Chin. Phys. B, 2011, 20(11): 110307.
[6] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
ZhangHuan-Ping, Li Biao, Chen Yong. Chin. Phys. B, 2010, 19(6): 060302.
[7] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei, Zhu Jia-Min, Ma Zheng-Yi. Chin. Phys. B, 2007, 16(8): 2159-2166.
[8] A kind of extended Korteweg--de Vries equation and solitary wave solutions for interfacial waves in a two-fluid system
Yang Lian-Gui, Song Jin-Bao, Yang Hong-Li, Liu Yong-Jun. Chin. Phys. B, 2007, 16(12): 3589-3594.
[9] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang, Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[10] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
Zha Qi-Lao, Sirendaoreji. Chin. Phys. B, 2006, 15(3): 475-477.
[11] Applications of F-expansion method to the coupled KdV system
Li Bao-An, Wang Ming-Liang. Chin. Phys. B, 2005, 14(9): 1698-1706.
[12] New expansion algorithm of three Riccati equations and its applications in nonlinear mathematical physics equations
Zhi Hong-Yan, Zhao Xue-Qin, Zhang Hong-Qing. Chin. Phys. B, 2005, 14(7): 1296-1302.
[13] A unified approach in seeking the solitary wave solutions to sine-Gordon type equations
Xie Yuan-Xi, Tang Jia-Shi. Chin. Phys. B, 2005, 14(7): 1303-1306.
[14] General Jacobian elliptic function expansion method and its applications
Ma Zheng-Yi, Fang Jian-Ping, Zhu Jia-Min, Zheng Chun-Long, Zhang Jie-Fang. Chin. Phys. B, 2004, 13(6): 798-804.
[15] New explicit exact solutions to a nonlinear dispersive-dissipative equation
Wang Ke-Xie, Naranmandula. Chin. Phys. B, 2004, 13(2): 139-143.
No Suggested Reading articles found!