Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 033402    DOI: 10.1088/1674-1056/20/3/033402

Cross sections of Oq+(q=1 - 4) electron loss in collisions with He, Ne and Ar

Lu Yan-Xia, Lu Xing-Qiang, Song Xiang, Zhang Bo-Li
School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
Abstract  Electron-loss cross sections of Oq+ (q=1-4) colliding with He, Ne and Ar atoms are measured in the intermediate velocity regime. The ratios of the cross sections of two-electron loss to that of one-electron loss R21 are presented. It is shown that single-channel analysis is not sufficient to explain the results, but that projectile electron loss, electron capture by the projectile and target ionization must be considered together to interpret the experimental data. The screening and antiscreening effects can account for the threshold velocity results, but cannot explain the dependence of the ratio R21 on velocity quantitatively. In general, the effective charge of the target atom increases with velocity increasing because the high-speed projectile ion can penetrate into the inner electronic shell of target atom. Ne and Ar atoms have similar effective charges in this velocity regime, but He atoms have smaller ones at the same velocities due to its smaller nuclear charge.
Keywords:  ion--atom collision      cross section      electron loss  
Received:  21 April 2010      Revised:  21 July 2010      Published:  15 March 2011
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
Fund: Project supported by the Special Foundation for Key Programs of Basic Research at its earlier stage, Ministry of Science and Technology, China(Grant No. 2002CCA00900) and by the Foundation for the Doctors of University of South China (Grant No. 5-2007-XQD-001).

Cite this article: 

Lu Yan-Xia, Lu Xing-Qiang, Song Xiang, Zhang Bo-Li Cross sections of Oq+(q=1 - 4) electron loss in collisions with He, Ne and Ar 2011 Chin. Phys. B 20 033402

[1] Lu Y X, Chen X M, Ding B W, Fu H B, Cui Y, Shao J X, Zhang H Q and Gao Z M 2007 Acta Phys. Sin. 56 4461 (in Chinese)
[2] Chen X M, Lu Y X, Ding B W, Liu Y W, Cui Y, Gao Z M, Fu H B, Du J and Shao J X 2007 Chin. Phys. 16 2384
[3] Chen X M, Lu Y X, Gao Z M, Cui Y, Liu Y W and Du J 2007 Nucl. Instr. and Meth. B 262 161
[4] Lu Y X, Xiao D T, Yu T, Liu L J, Chen X M, Cui Y and Shao J X 2009 Nucl. Instr. and Meth. B 267 474
[5] Sattin F 2001 Phys. Rev. A 64 034704
[6] Matveev V I, Ryabchenko S V, Matrasulov D U, Rakhimov K Y, Fritzsche S and St"ohlker T 2009 Phys. Rev. A 79 042710
[7] Wolff W, Luna H, Santos A C F, Montenegro E C and Sigaud G M 2009 Phys. Rev. A 80 032703
[8] Montenegro E C, Sigaud G M and Meyerhof W E 1992 Phys. Rev. A 45 1575
[9] Montenegro E C, Meyerhof W E and McGuire J H 1994 Adv. At. Mol. Opt. Phys. 34 249
[10] McGuire J H, Stolterfoht N and Simony P R 1981 Phys. Rev. A 24 97
[11] Senger B, Wittendorp R E and Rechenmann R V 1982 Nucl. Instr. and Meth. B 194 437
[12] Sant'Anna M M, Melo W S, Santos A C F, Sigaud G M and Montenegro E C 1995 Nucl. Instr. and Meth. B 99 46
[13] Sigaud G M, Jora's F S, Santos A C F, Montenegro E C, Sant'Anna M M and Melo W S 1997 Nucl. Instr. and Meth. B 132 312
[14] Brendle' B, Gayet R, Rozet J P and Wohrer K 1985 Phys. Rev. Lett. 54 2007
[15] Wohrer K, Chetioui A, Rozet J P, Jolly A, Fernandez F, Stephan C, Brendle' B and Gayet R 1986 J. Phys. B 19 1997
[16] Xu X Y, Montenegro E C, Anholt R, Danzmann K, Meyerhof W E, Schlachter A S, Rude B S and McDonald R J 1988 Phys. Rev. A 38 1848
[17] Chung H K, Lee R W and Chen M H 2007 High Energy Density Physics 3 342
[18] Chabot M, Wohrer K, Chetioui A, Rozet J P, Touati A, Vernhet D, Politis M F, Stephan C, Grandin J P, Macias A, Martin F, Riera A, Sanz J L and Gayet R 1994 J. Phys. B 27 111
[19] Walters H R J 1975 J. Phys. B 8 54
[20] Woitke O, Za'vodszky P A, Ferguson S M, Houck J H and Tanis J A 1998 Phys. Rev. A 57 2692
[21] Grande P L, Schiwietz G, Sigaud G M and Montenegro E C 1996 Phys. Rev. A 54 2983
[22] McGuire J H 1987 Phys. Rev. A 36 1114
[23] Santos A C F, Melo W S, Sant'Anna M M, Sigaud G M and Montenegro E C 2001 Phys. Rev. A 63 062717
[24] Liu J B, Wang Y and Zhou Y J 2007 Chin. Phys. 16 0072
[25] Shi D H, Sun J F, Zhu Z L, Ma H, Liu Y F and Yang X D 2007 Chin. Phys. 16 1655
[26] Yu C R 2008 Chin. Phys. B 17 2097
[27] Chi B Q, Liu L and Wang J G 2008 Chin. Phys. B 17 2890
[28] Zhu X L Ma X W Li B Feng W T Zhang S F Liu H P Qian D B and Zhang D C 2010 Acta Phys. Sin 59 0620 (in Chinese) endfootnotesize
[1] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[2] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[3] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[4] Electron capture in collisions of Li3+ ions with ground andexcited states of Li atoms
M X Ma(马茗萱), B H Kou(寇博珩), L Liu(刘玲), Y Wu(吴勇), J G Wang(王建国). Chin. Phys. B, 2020, 29(1): 013401.
[5] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[6] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[7] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[8] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[9] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[10] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
[11] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[12] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
[13] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[14] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[15] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
No Suggested Reading articles found!