Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024212    DOI: 10.1088/1674-1056/20/2/024212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Electro-optical properties of polymer stabilized cholesteric liquid crystal film

 Ma Jib,Zheng Zhi-Ganga, Liu Yong-Gangb, Xuan Lib
a Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, China; b State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
Keywords:  liquid crystal      polymer      electro-optical property      cholesteric liquid crystal  
Received:  27 May 2010      Revised:  25 June 2010      Published:  15 February 2011
PACS:  42.70.Df (Liquid crystals)  
  42.79.Kr (Display devices, liquid-crystal devices)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).

Cite this article: 

Ma Ji, Zheng Zhi-Gang, Liu Yong-Gang, Xuan Li Electro-optical properties of polymer stabilized cholesteric liquid crystal film 2011 Chin. Phys. B 20 024212

[1] Yang D K, Doane J W, Yaniv Z and Glasser J 1994 Appl. Phys. Lett. 64 1905
[2] Yang D K, Huang X Y and Zhu Y M 1997 Ann. Rev. Mater. Sci. bf 27 117
[3] Huang Z 2010 Key Eng. Mater. 428--429 206
[4] Wang S, He J, Zeng Y, Yan B and Wang Y 2008 Front. Chem. Eng. China 2 265
[5] He J, Yan B, Yu B, Wang S, Wang X, Wang J, Zeng Y, Ran R and Wang Y 2008 J. Polym. Sci. Pol. Chem. 46 3140
[6] Ma J, Shi L and Yang D K 2010 Appl. Phys. Express 3 021702
[7] Kikuchi H, Yokota M, Hisakado Y, Yang H and Kajiyama T 2002 it Nature Mater. 1 64
[8] Choi S W, Yamamoto S I, Iwata T and Kikuchi H 2009 J. Phys. D: Appl. Phys. 42 112002
[9] Guo J, Sun J, Zhang L, Li K, Cao H, Yang H and Zhu S 2008 Polym. Adv. Technol. 19 1504
[10] Huang Z, Yang W and Wang J 2008 Front. Optoelectron. China bf 1 188
[11] Zheng Z, Song J, Zhang L, Liu Y, Guo F, Ma J, Li W, Deng S and Xuan L 2008 Chin. Phys. B 17 3227
[12] Zheng Z, Ma J, Li W, Song J, Liu Y and Xuan L 2008 Liq. Cryst. 35 885
[13] Huang C Y, Chih Y S and Ke S W 2007 Appl. Phys. B 86 123
[14] Yang D K and Wu S T 2006 Fundamentals of Liquid Crystal Devices (New York: John Wiley & Sons Inc)
[15] Fung Y K, Yang D K, Ying S, Chien L C, Zumer S and Doane J W 1995 Liq. Cryst. 19 797
[16] Jang W G, Sun R, Twieg R J and Yang D K 2000 J. Soc. Inf. Display 8 73
[17] Yang D K, Chien L C and Doane J W 1992 Appl. Phys. Lett. bf 60 3102
[18] Liang X, Cao H, Pan G, Cui X, Li F, Niu G, Zhang D, Yang Z, Yang H and Zhu S 2009 Liq. Cryst. 36 93
[19] Yang D K 2008 Journal of SID 16 117
[20] Ma R Q and Yang D K 2000 Phys. Rev. E 61 1567
[21] Sun R, Jang W and Yang D K 1999 SID'99 Digest 652
[1] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[2] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[3] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[4] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[5] Interference effect on the liquid-crystal-based Stokes polarimeter
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿). Chin. Phys. B, 2020, 29(12): 124211.
[6] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[7] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟), Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声), Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[8] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影), Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[9] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
[10] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[11] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[12] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[13] Control on β conformation of poly(9,9-di-n-octylfluorene) via solvent annealing
Zhi Chao Zhang(张志超), Bing Yue Zhang(张丙悦), Yu Yan Weng(翁雨燕), Tian Hui Zhang(张天辉). Chin. Phys. B, 2019, 28(7): 076101.
[14] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[15] Tunable superconductivity in parent cuprate Pr2CuOδ thin films
Xinjian Wei(魏鑫健), Ge He(何格), Wei Hu(胡卫), Xu Zhang(张旭), Mingyang Qin(秦明阳), Jie Yuan(袁洁), Beiyi Zhu(朱北沂), Yuan Lin(林媛), Kui Jin(金魁). Chin. Phys. B, 2019, 28(5): 057401.
No Suggested Reading articles found!