Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127301    DOI: 10.1088/1674-1056/20/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The binding energy of a hydrogenic impurity in self-assembled double quantum dots

Liu Jian-Juna, Zhang Hongb, Wang Xueb, Zhao Jian-Fengb
a College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang 050016, China; b College of Science, Hebei University of Engineering, Handan 056038, China
Abstract  The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finite-difference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.
Keywords:  magnetic field      hydrogenic impurity      double quantum dots      binding energy  
Received:  23 May 2011      Revised:  29 August 2011      Published:  15 December 2011
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.La (Quantum dots)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674040), the Natural Science Foundation of Hebei Province of China (Grant No. A2011205092), and the Scientific and Technological Research and Development Projects of Handan City (Grant No. 1128120063-3).

Cite this article: 

Zhang Hong, Wang Xue, Zhao Jian-Feng, Liu Jian-Jun The binding energy of a hydrogenic impurity in self-assembled double quantum dots 2011 Chin. Phys. B 20 127301

[1] Granados D and Garcia J M 2003 Appl. Phys. Lett. 82 2401
[2] Raz T, Ritter D and Bahi G. 2003 Appl. Phys. Lett. 82 1706
[3] Huang S S, Niu Z C, Fang Z D, Ni H Q and Gong Z 2006 Appl. Phys. Lett. 89 031921
[4] Hashimoto T, Oshima R and Okada S Y 2007 J. Cryst. Growth 301-302 821
[5] Fuster D, Alen B, Gonzalez L, Gonzalez Y and Pastor J M 2007 J. Cryst. Growth 301-302 705
[6] Zhang M and Ban S L 2009 Chin. Phys. B 18 5437
[7] Mikhailov I D, Betancur F J, Escorcia R A and Sieera-Ortega J 2003 Phys. Rev. B 67 115317
[8] An X T and Liu J J 2006 J. Appl. Phys. 99 123713
[9] Brandi H S, Latgé A and Oliveira L E 2004 Phys. Rev. B 70 153303
[10] Zhang M and Ban S L 2009 Chin. Phys. B 18 4449
[11] Park G, Shchechin O B, Huffaher D L and Deppe D G 2000 Appl. Phys. Lett. 73 3351
[12] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[13] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[14] Perez-Merchancano S T, Paredes-Gutierrez H and Silva-Valencia J 2007 J. Phys.: Condens. Matter 19 026225
[15] Qu F Y, Fonseca A L A and Nunes O A C 1997 J. Appl. Phys. 82 1236
[16] Liu J J, Shen M and Wang S W 2007 J. Appl. Phys. 101 073703.
[17] Wang X F 2007 Phys. Lett. A 364 66
[18] Szafran B, Bednarek S and Adamowski J 2001 Phys. Rev. B 64 125301
[19] Szafran B, Bednarek S, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[4] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[5] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[6] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[7] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[8] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[9] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[10] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[11] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[12] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[13] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[14] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!