Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120508    DOI: 10.1088/1674-1056/20/12/120508
GENERAL Prev   Next  

Modified impulsive synchronization of fractional order hyperchaotic systems

Ma Tie-Donga, Fu Jieb, Yu Miaob
a College of Automation, Chongqing University, Chongqing 400044, China; b Key Laboratory of Optoelectronic Technology and System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Abstract  In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
Keywords:  impulsive control      hyperchaotic systems      fractional order chaotic systems      synchronization     
Received:  03 July 2011      Published:  15 December 2011
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179), the Natural Science Foundation of Chongqing, China (Grant No. CSTC 2010BB2238), the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025), the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043), and the Fundamental Research Funds for the Central Universities (Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01).

Cite this article: 

Fu Jie, Yu Miao, Ma Tie-Dong Modified impulsive synchronization of fractional order hyperchaotic systems 2011 Chin. Phys. B 20 120508

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[2] Hilfer R 2001 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[3] Hartley T T, Lorenzo C F and Qammer H K 1995 emph IEEE Transactions CAS-I 42 485
[4] Ahmad W M and Sprott J C 2003 emph Chaos, Solitons and Fractals 16 339
[5] Zhang R X and Yang S P 2009 emph Chin. Phys. B 18 3295
[6] Lu J G and Chen G R 2006 emph Chaos, Solitons and Fractals 27 685
[7] Lu J G 2006 emph Phys. Lett. A 354 305
[8] Li C G and Chen G R 2004 emph Physica A 341 55
[9] Wu Z M and Xie J Y 2007 emph Chin. Phys. 16 1901
[10] Pecora L M and Carroll T L 1990 emphPhys. Rev. Lett. 64 821
[11] Bhalekar S and Daftardar-Gejji V 2010 emph Commun. Nonlinear Sci. Numer. Simul. 15 3536
[12] Taghvafard H and Erjaee G H 2011 emph Commun. Nonlinear Sci. Numer. Simul. 16 4079
[13] Hosseinnia S H, Ghaderi R, Ranjbar N A, Mahmoudiana M and Momani S 2010 emph Comput. Math. Appl. 59 1637
[14] Tavazoei M S and Haeri M 2008 emph Physica A 387 57
[15] Sun N, Zhang H G and Wang Z L 2011 emph Acta Phys. Sin. 60 050511 (in Chinese)
[16] Zhao L D, Hu J B and Liu X H 2010 emphActa Phys. Sin. 59 2305 (in Chinese)
[17] Odibat Z M 2010 emph Nonlinear Dyn. 60 479
[18] Zhang R X and Yang S P 2010 emph Chin. Phys. B 19 020510
[19] Wu C J, Zhang Y B and Yang N N 2011 emph Chin. Phys. B 20 060505
[20] Wang X Y, Zhang Y L, Li D and Zhang N 2011 emph Chin. Phys. B 20 030506
[21] Sheu L J, Tam L M, Lao S K, Kang Y, Lin K T, Chen J H and Chen H K 2009 emph Int. J. Nonlinear Sci. Numer. Simul. 10 33
[22] Zhang H G, Ma T D, Huang G B and Wang Z L 2010 emphIEEE Trans. Syst. Man Cybern. B 40 831
[23] Ma T D, Fu J and Sun Y 2010 emph Chin. Phys. B 19 090502
[24] Ma T D, Zhang H G and Wang Z L 2007 emphActa Phys. Sin. 56 3796 (in Chinese)
[25] Zhang H G, Ma T D, Yu W and Fu J 2008 emphChin. Phys. B 17 3616
[26] Zhang H G, Ma T D, Fu J and Tong S C 2009 emphChin. Phys. B 18 3742
[27] Zhang H G, Ma T D, Fu J and Tong S C 2009 emphChin. Phys. B 18 3751
[28] Wang X Y and Song J M 2009 emph Commun. Nonlinear Sci. Numer. Simul. 14 3351
[29] Gao T G, Chen Z Q, Yuan Z Z and Yu D C 2007 emphChaos, Solitons and Fractals 33 922
[30] Cafagna D and Grassi G 2010 emphInt. J. Bifur. Chaos 20 3209
[31] Min F H, Yu Y and Ge C J 2009 emphActa Phys. Sin. 58 1456 (in Chinese)
[1] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[2] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[3] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[4] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[5] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[6] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[7] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[8] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[9] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[10] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[11] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[12] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[13] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[14] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[15] Fiber-based joint time and frequency dissemination via star-shaped commercial telecommunication network
Yi-Bo Yuan(袁一博), Bo Wang(王波), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(8): 080601.
No Suggested Reading articles found!