Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120304    DOI: 10.1088/1674-1056/20/12/120304
GENERAL Prev   Next  

Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method

Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯)
Department of Physics, Jiangxi Normal University, Nanchang 330022, China
Abstract  For the conventional translational shape-invariant potentials (TSIPs), it has demonstrated that the phase contribution devoted by the scattered subwaves in the analytical transfer matrix quantization condition is integrable and independent of n. Based on this fact we propose a novel strategy to generate the whole set of conventional TSIPs and classify them into three types. The generating functions are given explicitly and the Morse potential is taken as an example to illustrate this strategy.
Keywords:  translational shape-invariant potentials      supersymmetric quantum mechanics      analytical transfer matrix method      scattered subwaves      generating function  
Received:  09 May 2010      Revised:  20 June 2011      Accepted manuscript online: 
PACS:  03.65.Sq (Semiclassical theories and applications)  
  11.30.Pb (Supersymmetry)  
Fund: Project supported by the State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No. 2008SH05).

Cite this article: 

Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method 2011 Chin. Phys. B 20 120304

[1] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[2] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[3] Gendenshtein L E 1983 JETP Lett. 38 356
[4] Chuan C 1991 J. Phys. A: Math. Gen. 24 L1165
[5] Gangopadhyaya A, Mallow J V and Sukhatme U P 1998 Phys. Rev. A 58 4287
[6] Khare A and Sukhatme U 1993 J. Phys. A: Math. Gen. 26 L901
[7] Sukhatme U P, Rasinariu C and Khare A 1997 Phys. Lett. A 234 401
[8] Lau H K and Leung P T 2008 J. Phys. A: Math. Theor. 41 075307
[9] Comtet A, Bandrauk and Campbell D 1985 Phys. Lett. B 150 159
[10] Friedrich H and Trost J 2004 Phys. Rep. 397 359
[11] Cherqui C, Binder Y and Gangopadhyaya A 2008 Phys. Lett. A 372 1406
[12] Yin C, Cao Z Q and Shen Q S 2010 Ann. Phys. 325 528
[13] Cao Z Q, Liu Q, Shen Q S, Dou X, Chen Y and Ozaki Y 2001 Phys. Rev. A 63 054103
[14] Ou Y C, Cao Z Q and Shen Q S 2003 Phys. Lett. A 318 36
[15] Yuan W, Yin C, Wang X P and Cao Z Q 2010 Chin. Phys. B 19 093402
[16] Yin C, Wu Z J, Wang X P, Sun J J and Cao Z Q 2010 Chin. Phys. B 19 117305
[17] Quesne C 2008 J. Phys. A: Math. Theor. 41 392001
[18] Odake S and Sasaki R 2010 J. Math. Phys. (N.Y.) 51 053513
[19] Wang Q, Sukhatme U, Keung W Y and Imbo T 1990 Mod. Phys. Lett. A 5 525
[20] Bougie J, Gangopadyaya A and Mallow J V 2010 Phys. Rev. Lett. 105 210402
[21] Dutt R, Khare A and Sukhatme U 1986 Phys. Lett. B 181 295
[22] Barclay D and Maxwell C 1991 Phys. Lett. A 157 351
[23] Friedrich H and Trost J 1996 Phys. Rev. Lett. 76 4869
[24] Hagedorn G A and Robinson S L 1998 J. Phys. A: Math. Gen. 31 10113
[1] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[2] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[3] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[4] Degree distribution of random birth-and-death network with network size decline
Xiao-Jun Zhang(张晓军), Hui-Lan Yang(杨会兰). Chin. Phys. B, 2016, 25(6): 060202.
[5] The influence of phonon bath on the control of single photon
Zhang Wei (张威), Lu Hai-Tao (芦海涛). Chin. Phys. B, 2015, 24(6): 067806.
[6] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi (范洪义), Zhang Peng-Fei (张鹏飞), Wang Zhen (王震). Chin. Phys. B, 2015, 24(5): 050303.
[7] New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics
Fan Hong-Yi (范洪义), Zhan De-Hui (展德会). Chin. Phys. B, 2014, 23(6): 060301.
[8] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[9] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui (展德会), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(12): 120301.
[10] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[11] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[12] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[13] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[14] Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2
Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越). Chin. Phys. B, 2011, 20(7): 071101.
[15] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
No Suggested Reading articles found!