Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110402    DOI: 10.1088/1674-1056/20/11/110402
GENERAL Prev   Next  

Five-dimensional teleparallel theory equivalent to general relativity, the axially symmetric solution, energy and spatial momentum

Gamal G.L. Nashed
Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
Abstract  A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.
Keywords:  five-dimensional solution      five-dimensional teleparallel equivalent of general relativity      energy and spatial momentum  
Received:  27 April 2011      Revised:  09 June 2011      Published:  15 November 2011
PACS:  04.20.Jb (Exact solutions)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.50.Gh (Higher-dimensional black holes, black strings, and related objects)  
  04.50.Kd (Modified theories of gravity)  

Cite this article: 

Gamal G.L. Nashed Five-dimensional teleparallel theory equivalent to general relativity, the axially symmetric solution, energy and spatial momentum 2011 Chin. Phys. B 20 110402

[1] Aliev A N 2006 Mod. Phys. Lett. A A21 751
[2] Strominger A and Vafa C 1996 Phys. Lett. B 379 99
[3] Breckenridge J C, Myers R C, Peet A W and Vafa C 1997 Phys. Lett. B 391 93
[4] Kaluza T 1921 Sitzungsber. Preuss. Akad. Wiss Berlin Phys. Math. 966
[5] Klein O 1926 Z. Phys. 37 895
[6] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
[7] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[8] Frolov V and Stojkovic D 2003 Phys. Rev. D 67 084004
[9] Frolov V and Stojkovic D 2003 Phys. Rev. D 68 064011
[10] de Andrade V C, Guillen L C T and Pereira J G 2000 Phys. Rev. Lett. 84 4533
[11] de Andrade V C, Guillen L C T and Pereira J G 2001 Phys. Rev. D64 027502
[12] de Andrade V C and Pereira J G 1999 Int. J. Mod. Phys. D 8 141
[13] de Andrade V C and Pereira J G 1998 Gen. Rel. Grav. 30 263
[14] de Andrade V C and Pereira J G 1997 Phys. Rev. D 56 4689
[15] Calcada M and Pereira J G 2002 Phys. Rev. D 66 044001
[16] Maluf J W and da Rocha-Neto J F 1999 Gen. Rel. Grav. 31 173
[17] Maluf J W, Matins E F and Kneip A 1996 J. Math. Phys. 37 6302
[18] Maluf J W 1996 Gen. Rel. Grav. 28 1361
[19] Maluf J W 1996 J. Math. Phys. 37 6293
[20] Maluf J W 1995 J. Math. Phys. 36 4242
[21] Maluf J W 1994 J. Math. Phys. 35 335
[22] Blagojeviacutec M and Nikoliacutec I A 2000 Phys. Rev. D 62 024021
[23] Blagojeviacutec M and Vasiliacutec M 2001 Phys. Rev. D 64 044010
[24] Nashed G G L 2002 Phys. Rev. D 66 064015
[25] Muench U, Gronwald F and Hehl F W 1998 Gen. Rel. Grav. 30 933
[26] Chang C C, Nester J M and Chen C M 1999 it Phys. Rev. Lett. 83 1897
[27] Tung R S and Nester J M 1999 Phys. Rev. D 60 021501
[28] Nester J M and Yo Chin H J 1999 J. Phys. 37 113
[29] Nester J M, Ho F H and Chen C M 2003 arXiv: 0403101 [gr-qc]
[30] Nester J M 1989 Int. J. Mod. Phys. A 4 1755
[31] Nester J M 1989 Phys. Lett. A 139 112
[32] Nester J M 1992 J. Math. Phys. 33 910
[33] Itin Y 2002 Class. Quant. Grav. 19 173
[34] Itin Y 2005 J. Math. Phys. 46 012501
[35] Hehl F W, Neeman Y, Nitsch J and von der Heyde P 1978 Phys. Lett. B 78 102
[36] Pellegrini C and Plebanski J 1963 Mat. Fys. Skr. Dan. Vid. Selsk. 2 4
[37] Hayashi K and Nakano T 1967 Prog. Theor. Phys. 38 491
[38] Mo ller C 1978 Mat. Fys. Medd. Dan. Vid. Selsk. 39 13
[39] Meyer H 1982 Gen. Rel. Grav. 14 531
[40] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 866
[41] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 883
[42] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 883
[43] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 1435
[44] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 64 2222
[45] Hayashi K and Shirafuji T 1980 Prog. Theor. Phys. 65 525
[46] Sacuteaez D 1983 Phys. Rev. D 27 2839
[47] Kopzyacutenski W 1982 J. Phys. A 15 493
[48] Nester J M 1988 Class. Quantum Grav. 5 1003
[49] Toma N 1991 Prog. Theor. Phys. 86 659
[50] Kawai T and Toma N 1992 Prog. Theor. Phys. 87 583
[51] Kawai T 1994 Phys. Rev. D 49 2862
[52] Kawai T 2000 Phys. Rev. D 62 104014
[53] Blagojeviacutec M and Vasiliacutec M 2000 Class. Quant. Grav. 17 3785
[54] Baekler P and Hehl F W 2006 Int. J. Mod. Phys. Lett. D 15 635
[55] Xu S and Jing J 2006 Class. Quant. Grav. 23 4659
[56] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[57] Tung R S and Nester J M 1999 Phys. Rev. D 60 021501
[58] Hehl F W 1997 it Proceedings of the 6th School of Cosmology and Gravitation Course on Spin, Torsion Rotation and Supergravity Eric, Italy (New York: Plenum) p. 5
[59] Gronwald F and Hehl F W 1996 it International School of Cosmology and Gravitation: 14th. course: Quantum Gravity May, 1995, Erice, Italy (Singaproe: World Scientific) gr-qc/9602013
[60] Leclerc M 2005 Phys. Rev. D 71 027503
[61] Blagojeviacutec M 2002 Gravitation and Gauge Symmetries (IOP Publishing UK)
[62] Blagojeviacutec M and Vasiliacutec M 2000 Class. Quant. Grav. 17 3785
[63] Kopczyacutenski W 1990 Ann. Phys. 203 308
[64] Hehl F W, MacCrea J D, Mielke E W and Neéman Y 1995 Phys. Rep. 258 1
[65] Haysihi K 1977 Phys. Lett. B 69 441
[66] Nitsch J and Hehl F W 1980 Phys. Lett. B 90 98
[67] Mddotuller-Hoissen F and Nitsch J 1983 Phys. Rev. D 28 718
[68] Mddotuller-Hoissen F and Nitsch J 1985 Gen. Rel. Grav. 17 747
[69] Mielke E W 1990 Phys. Rev. D 42 3388
[70] Obukhov Yu N and Pereira J G 2004 Phys. Rev. D 69 128502
[71] Obukhov Yu N and Pereira J G 2003 Phys. Rev. D 67 044016
[72] Mielke E W 2004 Phys. Rev. D 69 128501
[73] Change C C and Nester J M 2000 Grav. & Cosmol. 6 257
[74] So L L, Nester J M and Chen H arXiv: 0605150 [gr-qc]
[75] Maluf J W 1998 Gen. Rel. Grav. 30 413
[76] Myers R C and Perry M J 1986 Annals Phys. 172 304
[77] Dirac P A M 1964 Lectures on Quantum Mechanics (Monographs Series No. 2) (New York: Yeshiva University) pp. 85, 86
[78] Maluf J W and da Rocha-Neto J F 2001 Phys. Rev. D 64 084014
[79] Landau L D and Lifshitz E M 1980 The Classical Theory of Fields (Oxford: Pergamon Press)
[80] Maluf J W, Ulhoa S C, Faria F F and da Rocha-Neto J F 2006 Calss. Quant. Grav. 23 6245
[81] Misner C W, Thorne K S and Wheeler J A 1973 it Gravitation (San Francisco: Freeman)
[82] Maluf J W, Veiga M V O and da Rocha-Neto J F 2007 Gen. Rel. Grav. 39 227
[83] Bae(c)kler P, Hecht R, Hehl F W and Shirafuji T 1987 Prog. Theor. Phys. 78 16
[84] Brown J D and York Jr J W 1991 it Proceedings of the Joint Summer Research conference on Mathematical Aspects of Classical Field Theory (Providence: American Mathematical Society) July 20-26, 1991
[85] Brown J D and York J W 1993 Phys. Rev. D 47 1407
No Suggested Reading articles found!