Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110307    DOI: 10.1088/1674-1056/20/11/110307
GENERAL Prev   Next  

Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates

Yao Shu-Fanga, Li Qiu-Yana, Li Zai-Dongb
a Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China; b Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China; School of Information Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract  In this paper, the Jacobi elliptic function expansion method provides an effective approach to obtain the exact periodic wave solutions of two-component Bose-Einstein condensates. Exact combined bright-bright and dark-dark soliton wave solutions can be achieved in their limit conditions. We also obtain the different formation regions of combined solitons. Our results show that the intraspecies (interspecies) interaction strengths clearly affect the formation of dark-dark, bright-bright and dark-bright soliton solutions in different regions.
Keywords:  Jacobi elliptic function method      solitary wave solutions  
Received:  10 April 2011      Revised:  14 June 2011      Published:  15 November 2011
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Key Program of Chinese Ministry of Education (Grant No. 2011015) and the Hundred Innovation Talents Supporting Project of Hebei Province of China (Grant No. CPRC014).

Cite this article: 

Yao Shu-Fang, Li Qiu-Yan, Li Zai-Dong Combined periodic wave and solitary wave solutions in two-component Bose–Einstein condensates 2011 Chin. Phys. B 20 110307

[1] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[2] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[3] Cardoso W B, Avelar A T, Bazeia D and Hussein M S 2010 Phys. Lett. A 374 2356
[4] Kivshar Y and Agrawal G 2003 Optical Solitons: Form Fibers to Photonic Crystals (New York: Academic Press)
[5] Malomed B A 2006 Soliton Management in Periodic Systems (New York: Springer Press)
[6] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[7] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[8] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[9] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[10] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[11] Busch T and Anglin J R 2000 Phys. Rev. Lett. 84 2298
[12] Law C K, Chan C M, Leung P T and Chu M C 2000 Phys. Rev. Lett. 85 1598
[13] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926
[14] Wu B, Liu J and Niu Q 2002 Phys. Rev. Lett. 88 034101
[15] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[16] Zhang L S, Cai L and Feng C W 2011 Acta Phys. Sin. 60 030308 (in Chinese)
[17] Fang J S and Liao X P 2011 Chin. Phys. B 20 040310
[18] Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 013423
[19] Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
[20] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[21] Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
[22] Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
[23] Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
[24] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
[25] Manakov S V 1974 Sov. Phys. JETP 38 248
[26] Makhankov V G, Makhaldiani N V and Pashaev O K 1981 Phys. Lett. A 81 161
[27] Kanna T, Tsoy E N and Akhmediev N 2004 Phys. Lett. A 330 224
[28] Kaup D J and Malomed B A 1993 Phys. Rev. A 48 599
[29] Malomed B A and Tasgal R S 1998 Phys. Rev. E 58 2564
[30] Öhberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
[31] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289 69
[32] Atre R, Panigrahi P K and Agarwal G S 2006 Phys. Rev. E 73 056611
[33] Kevrekidis P G, Nistazakis H E, Frantzeskakis D J, Malomed B A and Carretero-González R 2004 Eur. Phys. J. D 28 181 110307-6
[1] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[2] A novel (G’/G)-expansion method and its application to the Boussinesq equation
Md. Nur Alam, Md. Ali Akbar, Syed Tauseef Mohyud-Din. Chin. Phys. B, 2014, 23(2): 020203.
[3] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
ZhangHuan-Ping, Li Biao, Chen Yong. Chin. Phys. B, 2010, 19(6): 060302.
[4] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei, Zhu Jia-Min, Ma Zheng-Yi. Chin. Phys. B, 2007, 16(8): 2159-2166.
[5] New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov--Kuzentsov equation
Taogetusang, Sirendaoreji. Chin. Phys. B, 2006, 15(6): 1143-1148.
[6] Construction of doubly-periodic solutions to nonlinear partial differential equations using improved Jacobi elliptic function expansion method and symbolic computation
Zhi Hong-Yan, Zhang Hong-Qing, Zhao Xue-Qin. Chin. Phys. B, 2006, 15(10): 2202-2209.
[7] Applications of F-expansion method to the coupled KdV system
Li Bao-An, Wang Ming-Liang. Chin. Phys. B, 2005, 14(9): 1698-1706.
[8] Extended Jacobi elliptic function method and its applications to (2+1)-dimensional dispersive long-wave equation
Li Biao, Zhang Hong-Qing, Chen Yong. Chin. Phys. B, 2004, 13(1): 5-10.
[9] The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation
Wang Yue-Ming, Wang Ming-Liang, Zhang Jin-Liang, Ren Dong-Feng, Fang Zong-De. Chin. Phys. B, 2003, 12(8): 825-830.
[10] The periodic wave solutions for two systems of nonlinear wave equations
Wang Yue-Ming, Wang Ming-Liang, Zhang Jin-Liang. Chin. Phys. B, 2003, 12(12): 1341-1348.
No Suggested Reading articles found!