Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100312    DOI: 10.1088/1674-1056/20/10/100312
GENERAL Prev   Next  

High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment

Fang Mao-Faa, Li Yan-Lingb
a College of Physics and Information Science, Hunan Normal University, Changsha 410081, China; b School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  This paper analyses a system of two independent qubits off-resonantly coupled to a common non-Markovian reservoir at zero temperature. Compared with the results in Markovian reservoirs, we find that much higher values of entanglement can be obtained for an initially factorized state of the two-qubit system. The maximal value of the entanglement increases as the detuning grows. Moreover, the entanglement induced by non-Markovian environments is more robust against the asymmetrical couplings between the two qubits and the reservoir. Based on this system, we also show that quantum state transfer can be implemented for arbitrary input states with high fidelity in the non-Markovian regime rather than the Markovian case in which only some particular input states can be successfully transferred.
Keywords:  quantum state transfer      non-Markovian environment      entanglement generation  
Received:  16 January 2011      Revised:  20 April 2011      Published:  15 October 2011
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072) and the Innovation Foundation for Postgraduate of Hunan Province of China (Grant No. CX2010B213).

Cite this article: 

Li Yan-Ling, Fang Mao-Fa High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment 2011 Chin. Phys. B 20 100312

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambrige University Press)
[2] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[3] Zurek W H 2003 Rev. Mod. Phys. 75 715
[4] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Yu T and Eberly J H 2009 Science 323 598
[6] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[7] Liao X P, Fang J S and Fang M F 2010 Chin. Phys. B 19 094203
[8] Braun D 2002 Phys. Rev. Lett. 89 227901
[9] Kim M S, Lee J, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101
[10] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[11] Nicolosi S, Napoli A, Messina A and Petruccione F 2004 Phys. Rev. A 70 022511
[12] Gardiner C W and Zoller P 1999 Quantum Noise (Berlin: Springer)
[13] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Bay S 2000 Rep. Prog. Phys. 63 455
[14] Piilo J, Maniscalco S, H"arkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[15] Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003
[16] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[17] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323
[18] Xiao X, Fang M F, Li Y L, Kang G D and Wu C 2010 Eur. Phys. J. D 57 447
[19] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[20] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302(R)
[21] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[22] Xiao X, Fang M F, Li Y L, Zeng K and Wu C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235502
[23] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[24] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[25] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[26] Ekert A K 1991 Phys. Rev. Lett. 67 661
[27] Dalton B J, Barnett S M and Garraway B M 2001 Phys. Rev. A 64 053813
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] Xiao X, Fang M F and Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505
[30] Mandel O, Greiner M, Widera A, Rom T, H"ansch T W and Bloch I 2003 Nature 425 937
[31] Leibfried D, Demarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi B, Langer C, Rosenband T and Wineland D J 2003 Nature 422 412
[32] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[33] Kane B E 1998 Nature 393 133
[34] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[35] McKeever J, Buck J R, Boozer A D, Kuzmich A, N"agerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[4] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[5] Discord and entanglement in non-Markovian environments at finite temperatures
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(9): 090302.
[6] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[7] Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature
Zou Hong-Mei, Fang Mao-Fa. Chin. Phys. B, 2015, 24(8): 080304.
[8] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[9] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[10] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin, Wu Wei. Chin. Phys. B, 2014, 23(7): 070303.
[11] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[12] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2011, 20(11): 110305.
[13] Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments
Huang Li-Yuan, Fang Mao-Fa. Chin. Phys. B, 2010, 19(9): 090318.
[14] Generation of entanglement in the atom-cavity-fibre system via adiabatic passage
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2010, 19(3): 030311.
[15] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
No Suggested Reading articles found!