Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097702    DOI: 10.1088/1674-1056/19/9/097702

Monte Carlo simulation on dielectric relaxation and dipole cluster state in relaxor ferroelectrics

Zhu Chen(朱琛) and Liu Jun-Ming(刘俊明)
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  The Ginzburg–Landau theory on ferroelectrics with random field induced by dipole defects is studied by using Monte Carlo simulation, in order to investigate the dipole configuration and the dielectric relaxation of relaxor ferroelectrics. With the increase of random field, the dipole configuration evolves from the long-range ferroelectric order into the coexistence of short-range dipole-clusters and less polarized matrix. The dipole-cluster phase above the transition temperature and superparaelectric fluctuations far below this temperature are identified for the relaxor ferroelectrics. We investigate the frequency dispersion and the time-domain spectrum of the dielectric relaxation, demonstrating the Vogel–Fulcher relationship and the multi-peaked time-domain distribution of the dielectric relaxation.
Keywords:  relaxor ferroelectrics      domain structure      relaxation spectrum      Ginzburg–Landau theory  
Received:  15 April 2010      Revised:  20 April 2010      Accepted manuscript online: 
PACS:  7780  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50832002 and 10874035), and the National Basic Research Program of China (Grant No. 2009CB623303).

Cite this article: 

Zhu Chen(朱琛) and Liu Jun-Ming(刘俊明) Monte Carlo simulation on dielectric relaxation and dipole cluster state in relaxor ferroelectrics 2010 Chin. Phys. B 19 097702

[1] Pirc P and Blinc R 1999 Phys. Rev. B 60 13470
[2] Blinc R, Laguta V and Zalar B 2003 Phys. Rev. Lett. 91 247601
[3] Vakhrushev S B and Shapiro S M 2004 Phys. Rev. B 70 134110
[4] Glazounov A E and Tagantsev A K 2000 Phys. Rev. Lett. 85 2192
[5] Kingon A I, Streiffier S K, Basceri C and Summerfelt S R 1996 MRS Bull. 21 46
[6] Settler N and Cross L E 1980 J. Appl. Phys. 51 4356
[7] Cross L E 1987 Ferroelectrics 76 241
[8] Tyunina M and Levoska J 2005 Phys. Rev. B 72 104112
[9] Vugmeister B E and Glinchuk M D 1990 Rev. Mod. Phys. 62 993
[10] Yao X, Chen Z and Cross L E 1983 J. Appl. Phys. 54 3399
[11] Semenovskaya S and Khachaturyan A G 1998 J. Appl. Phys. 83 5125
[12] Zhang Q M. Zhao J, Shrout T R and Cross L E 1997 J. Mater. Res. 12 1777
[13] Park C H and Chadi D J 1998 Phys. Rev. B 57 13961
[14] Wu Z, Duan W, Wang Y, Gu B L and Zhang X W 2003 Phys. Rev. B 67 052101
[15] Su C C, Vugmeister B and Khachaturyan A G 2001 J. Appl. Phys. 90 6345
[16] Liu J M, Wang X, Chan H L W and Choy C L 2004 Phys. Rev. B 69 094114
[17] Prosandeev S A, Cockayne E and Burton B P 2003 Phys. Rev. B 68 014120
[18] Rytz D, H"ochli U T and Bilz H 1980 Phys. Rev. B 22 359
[19] Burton B P, Cockayne E and Waghmare U V 2005 Phys. Rev. B 72 064113
[20] Tiwari V S, Singh N and Pandey D 1995 J. Phys.: Condens. Matter 7 1441
[21] Cao W and Cross L E 1991 Phys. Rev. B 44 5
[22] Nambu S and Sagala D A 1994 Phys. Rev. B 50 5838
[23] Zhang Y F, Wang C L, Zhao M L, Li J C and Zhang R Z 2009 Chin. Phys. B 18 1665
[24] Zhou J, Lu T Q, Xie W G, Zhou J and Cao W W 2009 Chin. Phys. B 18 3054
[25] Sun P N, Cui L and Lu T Q 2009 Chin. Phys. B 18 1658
[26] Wang L F and Liu J M 2006 Appl. Phys. Lett. 89 092909
[27] Wang L F and Liu J M 2007 Appl. Phys. Lett. 90 062905
[28] Wang L F and Liu J M 2007 Appl. Phys. Lett. 91 092908
[29] Li B L, Liu X P, Fang F, Zhu J L and Liu J M 2006 Phys. Rev. B 73 014107
[30] Hu H L and Chen L Q 1997 Mater. Sci. Eng. A 238 182.
[31] Salamon M B, Lin P and Chun S H 2002 Phys. Rev. Lett. 88 197203
[32] Wang K F, Wang Y, Wang L F, Dong S, Li D, Zhang Z D, Yu H, Li Q C and Liu J M 2006 Phys. Rev. B 73 134411
[33] Liu J M, Dong S, Chan H L W and Choy C L 2006 J. Phys.: Conden. Matter 18 8973
[34] Anwar S, Sagdeo P R and Lalla N P 2006 Solid State Commun. 138 331
[35] Lu Z G and Calvarin G 1995 Phys. Rev. B 51 2694 endfootnotesize
[1] Evolution of domain structure in Fe3GeTe2
Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰). Chin. Phys. B, 2021, 30(2): 027505.
[2] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[3] Influence of the distance between two voltage contacts on giant magneto-impedance of Co-based amorphous wires
Zhang Shu-Ling(张树玲), Xing Da-Wei(邢大伟), and Sun Jian-Fei(孙剑飞) . Chin. Phys. B, 2010, 19(7): 077502.
[4] Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions
Wei Hong-Xiang (魏红祥), Lu Qing-Feng (路庆凤), Zhao Su-Fen (赵素芬), Zhang Xie-Qun (张谢群), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2004, 13(9): 1553-1559.
[5] Domain structures of Nd13Fe80B7 magnets during HDDR process
Zhang Zhen-Rong (张臻蓉), Pang Zhi-Yong (庞智勇), Zhao Yi-Min (赵义敏), Zhang Zheng-Yi (张正义), Han Sheng-Hao (韩圣浩), Han Bao-Shan (韩宝善). Chin. Phys. B, 2003, 12(11): 1305-1309.
[6] Investigation of the magnetic domain structure of (PtCoPt)/Si multilayers by magnetic force microscopy
Zhang Zhen-Rong (张臻蓉), Liu Hong (刘洪), Han Bao-Shan (韩宝善). Chin. Phys. B, 2002, 11(6): 629-634.
No Suggested Reading articles found!