Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 088105    DOI: 10.1088/1674-1056/19/8/088105
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

Yin Hong-Xing, Li Meng-Meng, Yang He, Long Yun-Ze, Sun Xin
College of Physics Science, Qingdao University, Qingdao 266071, China
Abstract  This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a "doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.
Keywords:  polyaniline films      conducting polymers      conductivity     
Received:  03 November 2009      Published:  15 August 2010
PACS:  73.61.Ph (Polymers; organic compounds)  
  61.41.+e (Polymers, elastomers, and plastics)  
  61.72.S- (Impurities in crystals)  
  68.55.-a (Thin film structure and morphology)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Fund: Project supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0472) and the National Natural Science Foundation of China (Grant Nos. 10604038 and 10910101081).

Cite this article: 

Yin Hong-Xing, Li Meng-Meng, Yang He, Long Yun-Ze, Sun Xin Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution 2010 Chin. Phys. B 19 088105

[1] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C and MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098
[2] Liu X J, Gao K, Li Y, Wei J H and Xie S J 2007 Chin. Phys. 16 2091
[3] Yun D Q, Feng W, Wu H C, Liu X Z and Qiang J F 2010 Chin. Phys. B 19 017304
[4] Guo L, Liang L Y, Chen C, Wang M T, Kong M G and Wang K J 2007 it Acta Phys. Sin. 56 4270 (in Chinese)
[5] Long Y Z, Xiao H M, Chen Z J, Wan M X, Jin A Z and Gu C Z 2004 Chin. Phys. 13 1918
[6] Long Y Z, Duvail J L, Wang Q T, Li M M and Gu C Z 2009 J. Mater. Res. 24 3018
[7] Li M M, Long Y Z, Tan J S, Yin H X, Sui W M and Zhang Z M 2010 it Chin. Phys. B 19 028102
[8] Ivanov I, Gherman B F and Yaron D 2001 Synth. Met. 116 111
[9] Long Y Z, Yin Z H, Li M M, Gu C Z, Duvail J L, Jin A Z and Wan M X 2009 Chin. Phys. B 18 2514
[10] Feng W, Huang K and Wan M X 2005 Chin. Phys. 14 306
[11] Tang Q W, Wu J H, Sun H, Lin J M, Fan S J and Hu D 2008 it Carbohydrate Polym. 74 215
[12] Li W P, Liu S H, Li C M and Duan Y P 2007 J. Funct. Mater. & Devices 13 345
[13] Yin Z H, Long Y Z, Huang K, Wan M X and Chen Z J 2009 Chin. Phys. B 18 298
[14] Long Y Z, Yin Z H, Hui W, Chen Z J and Wan M X 2008 Chin. Phys. B 17 2707
[15] Sambhu B, Dipak K, Nikhil K S and Joong H L 2009 Prog. Polym. Sci. 34 783
[16] Hitoshi Y, Tetsuo H and Noriyuki K 2006 Synth. Met. 156 1187
[17] Tan C K and Blackwood D J 2000 Sensor. Actuat. B 71 190
[18] Timofeeva O N, Lubentsov B Z, Sudakova Ye Z, Chernyshov D N and Khidekel M L 1991 Synth. Met. 40 111
[19] Lubentsov B, Timofeeva O, Saratovskikh S, Krinichnyi V, Pelekh A, Dmitrenko V and Khidekel M 1992 Synth. Met. 47 187
[20] Athawale A A, Bhagwat S V and Katre P P 2006 Sensor. Actuat. B 114 263
[21] Kahol P K, Dyakonov A J and McCormick B J 1997 Synth. Met. 89 17
[22] Pinto N J, Shah P D, Kahol P K and McCormick B J 1996 it Phys. Rev. B 53 52
[23] Tarachiwin L, Kiattibutr P, Ruangchuay L, Sirivat A and Schwank J 2002 Synth. Met. 129 303
[24] Zhou Y, Long Y Z, Chen Z J, Zhang Z M and Wan M X 2005 it Acta Phys. Sin. 54 228 (in Chinese)
[25] Bai H and Shi G Q 2007 Sensors 7 267
[26] Choudhury A 2009 Sensor. Actuat. B 138 318
[27] Li P, Li Y, Hong L J, Chen Y S and Yang M J 2009 Mater. Chem. Phys. 115 395
[28] Li S, Li F L, Zhou S M, Wang P, Chen K and Du Z L 2009 Chin. Phys. B 18 3985
[29] Verma D and Dutta V 2009 Sensor. Lett. 7 143
[30] Zhang T, Mubeen S, Yoo B Y, Myung N V and Deshusses M A 2009 it Nanotechnology 20 255501
[31] Li W G and Wan M X 1998 Synth. Met. 92 121
[32] Long Y Z, Chen Z J, Wang N L, Li J C and Wan M X 2004 it Physica B 344 82
[33] MacDiarmid A G, Chiang J C, Halpen M and Huang W S 1985 it Mol. Cryst. Liq. Cryst. 121 173
[34] Cao Y, Smith P and Heeger A J 1992 Synth. Met. 48 91
[35] Li Q M, Cruz L and Phillips P 1993 Phys. Rev. B 47 1840
[36] Kaiser A B 2001 Adv. Mater. 13 927
[37] Long Y Z, Chen Z J, Zhang Z M, Wan M X, Zheng P and Wang N L 2003 Acta Phys. Sin. 52 175 (in Chinese)
[38] Jain S, Chakane S, Samui A B, Krishnamurthy V N and Bhoraskar S V 2003 Sensor. Actuat. B 96 124
[39] Ruangchuay L, Sirivat A and Schwank J 2004 Synth. Met. 140 15
[40] MacDiarmid A G, Chiang J C, Richter A F and Epstein A J 1987 Synth. Met. 18 285
[41] Huang W S, Humphrey B D and MacDiarmid A G 1986 J. Chem. Soc. Faraday Trans. 82 2385
[1] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[2] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[3] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[4] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[5] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[6] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[7] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[10] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[11] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[12] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[13] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[14] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺)1,2, Ming-Wei Ma(马明伟)2,3,†, Shao-Bo Liu(刘少博)2,4, Fang Zhou(周放)2,3,4, and Xiao-Li Dong(董晓莉)2,3,4. Chin. Phys. B, 2020, 29(12): 127404.
[15] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
No Suggested Reading articles found!