Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077307    DOI: 10.1088/1674-1056/19/7/077307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kondo transport through a quantum dot coupled with side quantum-dot structures

Jiang Zhao-Tan
Department of Physics, Beijing Institute of Technology, Beijing 100081, China;Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Abstract  This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green's function. In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures: a single-QD atom and a double-QD molecule. It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs, the one-, two-, or three-valley conductance pattern can be obtained. Furthermore, it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule. More interestingly, an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.
Keywords:  Kondo effect      quantum dot      quantum transport     
Published:  15 July 2010
PACS:  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10604005 and 10974015) and supported by Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0044).

Cite this article: 

Jiang Zhao-Tan Kondo transport through a quantum dot coupled with side quantum-dot structures 2010 Chin. Phys. B 19 077307

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768 bibitemQDs1 Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 156. bibitemQDs2 Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540 bibitemQDs3 Van der Wiel W G, Franceschi S D, Fujisawa T, Elzerman J M, Tarucha S and Kouwenhoven L P 2000 Science 289 2105 bibitemQDs4 Sasaki S, Franceschi S D, Elzerman J M, van Der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764 bibitemQDs5 Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779 bibitemQDs6 Nordlander P, Pustilnik M, Meir Y, Wingreen N S and Langreth D C 1999 Phys. Rev. Lett. 83 808 bibitemQDs7 Zhang P, Xue Q K, Wang Y and Xie X C 2002 Phys. Rev. Lett. 89 286803 bibitemQDs7 Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602 bibitemQDs8 Hu H, Zhang G M and Yu L 2001 Phys. Rev. Lett. 86 5558 bibitemQDs9 Sun Q F, Guo H and Lin T H 2001 Phys. Rev. Lett. 87 176601 bibitemQDs10 Jayaprakash C, Krishna-murthy H R and Wilkins J W 1981 Phys. Rev. Lett. 47 737 bibitemQDs11 Jones B A, Varma C M and Wilkins J W 1988 Phys. Rev. Lett. 61 125 bibitemQDs12 Jeong H, Chang A M and Melloch M R 2001 Science 293 2221 bibitemQDs13 Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565 bibitemQDs14 Vavilov M G and Glazman L I 2005 Phys. Rev. Lett. 94 086805 bibitemQDs15 Simon P, L'opez R and Oreg Y 2005 Phys. Rev. Lett. 92 086602 bibitemCPB1 Chen M L and Wang S J 2007 Chin. Phys. 16 2096 bibitemCPB2 Wu S Q, He Z, Yan C H, Chen X W and Sun W L 2006 Acta Phys. Sin. 55 1413 bibitemCPB3 Song H Z, Zhang P, Duan S Q and Zhao X G 2006 Chin. Phys. 15 2130 bibitemCPB4 Dong Q R 2008 Chin. Phys. B 17 1400 bibitemCPB5 Yin J W, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446 bibitemCPB6 Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783 bibitemCPB7 Sun K W and Xiong S J 2006 Chin. Phys. 15 828 bibitemCPB8 Li S S and Xia J B 2007 Chin. Phys. 16 1 bibitemCPB9 Jiang Z T, You J Q, Bian S B and Zheng H Z, 2002 Phys. Rev. B 66 205306
[28] Jiang Z T and Sun Q F, 2007 J. Phys.: Condens. Matter 19 156213 bibitemwire1 Kang K, Cho S Y, Kim J J and Shin S C 2001 Phys. Rev. B 63 113304 bibitemTorio Torio M E, Hallberg K, Ceccatto A H and Proetto C R 2002 Phys. Rev. B 65 085302 bibitemwire2 Orellana P A, Domn'higuez-Adame F, G'oez I and Ladr'ode Guevara M L 2003 Phys. Rev. B 67 085321 bibitemKob Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319 bibitemsato Sato M, Aikawa H, Kobayashi K, Katsumoto S and Iye Y 2005 Phys. Rev. Lett. 95 066801 bibitemQD1 G"uccl"u A D, Sun Q F and Guo H 2003 Phys. Rev. B 68 245323 bibitemQD2 Wu B H, Gao J C and Ahn K H 2005 Phys. Rev. B 72 165313 bibitemQD3 Tanamoto T and Nishi Y 2007 Phys. Rev. B 76 155319 bibitemQD4 Trocha P and Barna's J 2008 Phys. Rev. B 78 075424 bibitemKK1 Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946 bibitemBook1Datta S 2004 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) bibitemMeir Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[41] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 bibitemjiang Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
[43] Jiang Z T and Han Q Z 2008 Phys. Rev. B 78 035307 endfootnotesize
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[6] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[7] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[8] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[12] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[13] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
No Suggested Reading articles found!