Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077101    DOI: 10.1088/1674-1056/19/7/077101

Band structure and absorption coefficient in GaN/AlGaN quantum wires

Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The band structures of rectangular GaN/AlGaN quantum wires are modeled by using a parabolic effective-mass theory. The absorption coefficients are calculated in a contact-density matrix approach based on the band structure. The results obtained indicate that the peak absorption coefficients augment with the increase of the injected carrier density, and the optical gain caused by interband transition is polarization anisotropic. For the photon energy near 1.55 eV, we can obtain relatively large peak gain. The calculations support the previous results published in the recent literature.
Keywords:  polarization anisotropic      quantum wires      gain      absorption coefficient  
Published:  15 July 2010
PACS:  71.20.Nr (Semiconductor compounds)  
  78.67.Lt (Quantum wires)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  73.63.Nm (Quantum wires)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), and the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068 and 60644004).

Cite this article: 

Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min Band structure and absorption coefficient in GaN/AlGaN quantum wires 2010 Chin. Phys. B 19 077101

[1] Crnjanski J V and Gvozdic D M 2007 J. Appl. Phys. 101 013104
[2] Takahashi Y, Hayamizu Y, Itoh H, Yoshita M and Akiyama H 2005 Appl. Phys. Lett. 87 223119
[3] Liu Y M, Yu Z Y and Huang Y Z 2007 J. Univ. Sci. Technol. B 14 477
[4] Liu Y M, Yu Z Y and Ren X M 2007 Chin. Phys. Lett. 25 1850
[5] Alizon R, Hadass D, Mikhelashvili V, Einsenstein G, Schwertberger R, Somers A, Reithmaier J P, Forchel A, Calligaro M, Bansropun S and Krakowski M 2004 Electron. Lett. 40 760
[6] Ginzburg P and Orenstein M 2008 J. Appl. Phys. 103 083105
[7] Plumridge J R, Steed R J and Phillips C C 2008 Phys. Rev. B 77 205428
[8] Moret N, Oberli D Y, Dwir B, Rudra A, Gallo P and Kapon E 2008 Appl. Phys. Lett. 93 172107
[9] Cusack M A, Briddon P R and Jaros M 1996 Phys. Rev. B 54 R2300
[10] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 3471
[11] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 0881
[12] Gershoni D, Temkin H, Dolan G J, Dunsmuir J, Chu S N G and Panish M B 1998 Appl. Phys. Lett. 53 995
[13] Califano M and Harrison P 1999 J. Appl. Phys. 86 5054
[14] Yao W J, Yu Z Y, Liu Y M and Lu P F 2009 Acta Phys. Sin. 58 1185 (in Chinese)
[15] Schliwa A, Winkelnkemper M and Bimberg 2007 Phys. Rev. B 76 205324
[16] Xiang H J, Wei S H, Silva J L F D and Li J B 2008 Phys. Rev. B 78 193301 endfootnotesize
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
[5] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[6] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[7] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[8] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[9] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[10] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[11] Versatile GaInO3-sheet with strain-tunable electronic structure, excellent mechanical flexibility, and an ideal gap for photovoltaics
Hui Du(杜慧), Shijie Liu(刘世杰), Guoling Li(李国岭), Liben Li(李立本), Xueshen Liu(刘学深), Bingbing Liu(刘冰冰). Chin. Phys. B, 2019, 28(1): 016105.
[12] Pressure dependent modulation instability in photonic crystal fiber filled with argon gas
He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂). Chin. Phys. B, 2018, 27(9): 094221.
[13] Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2018, 27(7): 078101.
[14] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[15] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
No Suggested Reading articles found!