Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(6): 2294-2299    DOI: 10.1088/1674-1056/18/6/030
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Influence of the virtual photon field on the squeezing properties of atom laser

Zhao Jian-Gang(赵建刚), Sun Chang-Yong(孙长勇), Wen Ling-Hua(文灵华), and Liang Bao-Long(梁宝龙)
School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Abstract  This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose--Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms,parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser.
Keywords:  quantum optics      Bose--Einstein condensation      atom laser      virtual photon field  
Received:  22 December 2008      Revised:  28 December 2008      Accepted manuscript online: 
PACS:  32.80.-t (Photoionization and excitation)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10847143) and the Natural Science Foundation of Shandong Province (Grant Nos Q2007A01 and Y2008A23).

Cite this article: 

Zhao Jian-Gang(赵建刚), Sun Chang-Yong(孙长勇), Wen Ling-Hua(文灵华), and Liang Bao-Long(梁宝龙) Influence of the virtual photon field on the squeezing properties of atom laser 2009 Chin. Phys. B 18 2294

[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[3] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[4] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[5] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[6] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[7] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[8] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[9] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[10] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[11] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[12] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[13] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[14] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[15] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
No Suggested Reading articles found!