Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2018-2022    DOI: 10.1088/1674-1056/17/6/014
GENERAL Prev   Next  

Fractional Fourier transform of Cantor sets: further numerical study

Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰)
Department of Mathematics and Physics, Information Engineering University, Zhengzhou 450001, China
Abstract  This paper is a further work of the authors' paper published previously (Liao T H and Gao Q 2005 Chin. Phys. Lett. 22 2316). The amplitudes of fractional Fourier transform of Cantor sets are analysed from the viewpoint of multifractal by wavelet transform maxima method (WTMM). An integral operation is carried out before the application of WTMM, such that the function obtained can be considered as the perturbed devil staircase. Also, wavelets with large number of vanishing moments are used, which makes the complete singularity spectrum more accessible. The validity of multifractal formalism is guaranteed by restricting parameter $q$ to a proper range, so that the phenomenon of multifractal phase transition can be explained reasonably. Particularly, the method of determining the range of parameter $q$ in the above paper is developed to be more operational and rigorous.
Keywords:  multifractal      fractional Fourier transform      wavelet transform      perturbed devil staircase  
Received:  15 October 2007      Revised:  08 November 2007      Accepted manuscript online: 
PACS:  02.30.Nw (Fourier analysis)  
  02.10.Ab (Logic and set theory)  
  02.30.Uu (Integral transforms)  
  02.60.-x (Numerical approximation and analysis)  
  05.45.Df (Fractals)  
  05.70.Fh (Phase transitions: general studies)  

Cite this article: 

Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰) Fractional Fourier transform of Cantor sets: further numerical study 2008 Chin. Phys. B 17 2018

[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[4] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[5] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[6] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[7] Wavelet optimization for applying continuous wavelet transform to maternal electrocardiogram component enhancing
Qiong Yu(于琼), Qun Guan(管群), Ping Li(李萍), Tie-Bing Liu(刘铁兵), Jun-Feng Si(司峻峰), Ying Zhao(肇莹), Hong-Xing Liu(刘红星), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2017, 26(11): 118702.
[8] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[9] Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform
Wang Xiang-Li (汪祥莉), Wang Wen-Bo (王文波). Chin. Phys. B, 2015, 24(8): 080203.
[10] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[11] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[12] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[13] Extraction and verification of coherent structures in near-wall turbulence
Hu Hai-Bao (胡海豹), Du Peng (杜鹏), Huang Su-He (黄苏和), Wang Ying (王鹰). Chin. Phys. B, 2013, 22(7): 074703.
[14] Multifractal analysis of complex networks
Wang Dan-Ling (王丹龄), Yu Zu-Guo (喻祖国), Anh V. Chin. Phys. B, 2012, 21(8): 080504.
[15] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu(周煜), Leung Yee(梁怡), and Yu Zu-Guo(喻祖国) . Chin. Phys. B, 2011, 20(9): 090507.
No Suggested Reading articles found!