Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 424-430    DOI: 10.1088/1674-1056/17/2/013
GENERAL Prev   Next  

Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators

Zhang Ying-Qiao(张英俏)a)b)†, Jin Xing-Ri(金星日)b), and Zhang Shou(张寿)a)b)‡
a Center for the Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency $\omega_{\rm c}$ and an external laser field of frequency $\omega_{\rm L}$. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency $\omega_{0}$, the frequencies of the cavity mode $\omega_{\rm c}$ and the vibrational mode $\nu$. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.
Keywords:  quantum phase gates      squeezed operators      trapped ions  
Received:  11 April 2007      Revised:  03 July 2007      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60667001) and the Science Foundation of Yanbian University in China (Grant No 2007-31).

Cite this article: 

Zhang Ying-Qiao(张英俏), Jin Xing-Ri(金星日), and Zhang Shou(张寿) Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators 2008 Chin. Phys. B 17 424

[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[3] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[4] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[5] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[6] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[7] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[8] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[9] Measurement of the secular motion frequency and the space charge density in the linear ion trap
Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(11): 113206.
[10] Robust scheme for implemention of quantum phase gates for two atoms
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2009, 18(8): 3453-3456.
[11] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[12] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[13] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[14] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[15] One-step discrimination scheme on N-particle Greenberger--Horne--Zeilinger bases
Wang Xin-Wen(汪新文), Liu Xiang(刘翔), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(5): 1215-1219.
No Suggested Reading articles found!