Please wait a minute...
Chin. Phys., 2004, Vol. 13(9): 1493-1499    DOI: 10.1088/1009-1963/13/9/023
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Propagation properties of an index guiding high birefringence fibre

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, Jian Shui-Sheng
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  Based on a full-vector model, a theoretical study on a kind of high birefringence photonic crystal fibre is presented. Due to introducing air holes of two different sizes into the cladding, twofold rotational symmetry was obtained. We demonstrate the possibility of achieving high birefringence that is at least one order of magnitude higher than that of conventional polarization-maintaining fibres. The dependences of modal birefringence, modal field and differential group delay on the structure parameter of the fibres are discussed in detail. The numerical results are in very good agreement with the experimental results in the literature.
Keywords:  beat length      polarization mode dispersion      photonic crystal fibre      birefringence  
Received:  27 November 2003      Revised:  15 December 2003      Published:  21 June 2005
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Gs (Birefringence, polarization)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National High Technology Research Programme of China (Grant No 2002AA312190) and the fund of Beijing Jiaotong University (Grant No PD252).

Cite this article: 

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, Jian Shui-Sheng Propagation properties of an index guiding high birefringence fibre 2004 Chin. Phys. 13 1493

[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[3] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[4] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[5] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[6] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[7] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[8] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[9] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[10] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[11] Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence
Zhou Ji, He Zhi-Hong, Ma Yu, Dong Shi-Kui. Chin. Phys. B, 2015, 24(9): 094203.
[12] Drift effect on vacuum birefringence in a strong electric and magnetic field
Huang Yong-Sheng, Wang Nai-Yan, Tang Xiu-Zhang. Chin. Phys. B, 2015, 24(3): 034201.
[13] Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband
Li Duan-Ming, Zhou Gui-Yao, Xia Chang-Ming, Wang Chao, Yuan Jin-Hui. Chin. Phys. B, 2014, 23(4): 044209.
[14] Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence
Zhang Jie, Yu Jin-Ling, Cheng Shu-Ying, Lai Yun-Feng, Chen Yong-Hai. Chin. Phys. B, 2014, 23(2): 027304.
[15] Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique
Wang Bin, Qi Hong-Ji, Sun Wei, He Jun, Zhao Jiao-Ling, Wang Hu, Hou Yong-Qiang. Chin. Phys. B, 2014, 23(11): 117801.
No Suggested Reading articles found!