Please wait a minute...
Chin. Phys., 2003, Vol. 12(1): 75-78    DOI: 10.1088/1009-1963/12/1/013

Nanocrystalline silicon films prepared by laser-induced crystallization

Peng Ying-Caia, Fu Guang-Shengb, Yu Weib, Li She-Qiangb, Hou Hai-Hongb, Han Lib
a College of Electronic and Informational Engineering, Hebei University, Baoding, 071002, China; b College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  The excimer laser-induced crystallization technique has been used to investigate the preparation of nanocrystalline silicon (nc-Si) from amorphous silicon ($\al$-Si) thin films on silicon or glass substrates. The $\al$-Si films without hydrogen grown by pulsed-laser deposition are chosen as precursor to avoid the problem of hydrogen effluence during annealing. Analyses have been performed by scanning electron microscopy, atomic force microscopy, Raman scattering spectroscopy and high-resolution transmission--electron microscopy. Experimental results show that silicon nanocrystals can be formed through laser annealing. The growth characters of nc-Si are strongly dependent on the laser energy density. It is shown that the volume of the molten silicon predominates essentially the grain size of nc-Si, and the surface tension of the crystallized silicon is responsible for the mechanism of nc-Si growth.
Keywords:  laser annealing      crystallization      nanocrystalline silicon  
Received:  21 June 2002      Revised:  12 September 2002      Published:  20 January 2003
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.05.Cy (Elemental semiconductors)  
  61.82.Fk (Semiconductors)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.Lp (Transmission electron microscopy (TEM))  
  78.30.Am (Elemental semiconductors and insulators)  
  78.66.Db (Elemental semiconductors and insulators)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No 500084).

Cite this article: 

Fu Guang-Sheng, Yu Wei, Li She-Qiang, Hou Hai-Hong, Peng Ying-Cai, Han Li Nanocrystalline silicon films prepared by laser-induced crystallization 2003 Chin. Phys. 12 75

[1] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim‡. Chin. Phys. B, 2021, 30(1): 017201.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[4] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[5] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[6] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞), Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), Jie Liu(刘杰). Chin. Phys. B, 2020, 29(10): 106103.
[7] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
[8] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[9] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[10] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[11] Accurate quantification of hydration number for polyethylene glycol molecules
Wei Guo(郭伟), Lishan Zhao(赵立山), Xin Gao(高欣), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2018, 27(5): 055101.
[12] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[13] Improved performance of Ge n+/p diode by combining laser annealing and epitaxial Si passivation
Chen Wang(王尘), Yihong Xu(许怡红), Cheng Li(李成), Haijun Lin(林海军). Chin. Phys. B, 2018, 27(1): 018502.
[14] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[15] Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells
Hui Wei(韦慧), Yang Tang(汤洋), Bo Feng(冯波), Hui You(尤晖). Chin. Phys. B, 2017, 26(12): 128801.
No Suggested Reading articles found!