Please wait a minute...
Chin. Phys., 2002, Vol. 11(1): 9-11    DOI: 10.1088/1009-1963/11/1/003
GENERAL Prev   Next  

Global adaptive synchronization of chaotic systems with uncertain parameters

Han Chong-Zhaoa, Li Zhib
a School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; b School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Automatic Control Engineering, Xidian University, Xi'an 710071, China
Abstract  We propose a novel adaptive synchronization method for a class of nonlinear chaotic systems with uncertain parameters. Using the chaos control method, we derive a synchronizer, which can make the states of the driven system globally track the states of the drive system asymptotically. The advantage of our method is that our problem setting is more general than those that already exist, and the synchronizer is simply constructed by an analytic formula, without knowledge in advance of the unknown bounds of the uncertain parameters. A computer simulation example is given to validate the proposed approach.
Keywords:  uncertain parameters      chaotic systems      chaos control      adaptive chaos synchronization  
Received:  09 April 2001      Revised:  27 July 2001      Published:  12 June 2005
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60174016).

Cite this article: 

Han Chong-Zhao, Li Zhi Global adaptive synchronization of chaotic systems with uncertain parameters 2002 Chin. Phys. 11 9

[1] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[2] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[3] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[4] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[5] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[6] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui, Sun Hui, Wang Jie-Zhi, Wang Lu, Wang Yan-Chao. Chin. Phys. B, 2015, 24(2): 020501.
[7] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[8] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai, Yang Li-Xing, Li Ke-Ping. Chin. Phys. B, 2015, 24(1): 010503.
[9] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng, Wang Yu, Luo Mao-Kang. Chin. Phys. B, 2014, 23(8): 080501.
[10] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan, Chen Li-Qun . Chin. Phys. B, 2014, 23(3): 030504.
[11] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li, Zhao Liu-Wei, Tian Li-Xin. Chin. Phys. B, 2014, 23(2): 020204.
[12] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo, Xiao Wen-Dong, Sun Chang-Yin, Wei Qing-Lai. Chin. Phys. B, 2013, 22(9): 090502.
[13] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[14] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping. Chin. Phys. B, 2013, 22(7): 070501.
[15] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui. Chin. Phys. B, 2013, 22(6): 060510.
No Suggested Reading articles found!