Please wait a minute...
Chin. Phys., 2001, Vol. 10(3): 234-239    DOI: 10.1088/1009-1963/10/3/012
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

QUASILOCAL ENERGY FOR STATIONARY AXISYMMETRIC EMDA BLACK HOLE

Wang Shi-lianga, Jing Ji-liangb
a Physics Department and Institute of Physics, Hunan Normal University, Changsha 410081, China; b Physics Department and Institute of Physics, Hunan Normal University, Changsha 410081, China; Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  By using Brown-York quasilocal energy theory we calculate the quasilocal energy of a stationary axisymmetic EMDA black hole and explore the universality of Martinez's conjecture in string theory. We show that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the Martinez's conjecture, the Brown-York quasilocal energy at the outer horizon reduces to twice its irreducible mass, is still valid for stationary axisymmetric EMDA black hole. From the result we also find that the Kerr-Sen spacetime keeps up with Martinez's conjecture. This is different from the Bose-Naing result that the quasilocal energy of the Kerr-Sen spacetime does not approach the Martinez's conjecture.
Keywords:  energy      general relativity      black hole  
Received:  19 August 2000      Published:  12 June 2005
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  97.60.Lf (Black holes)  
  11.27.+d (Extended classical solutions; cosmic strings, domain walls, texture)  
  04.20.Gz (Spacetime topology, causal structure, spinor structure)  
  95.30.Sf (Relativity and gravitation)  
  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  

Cite this article: 

Wang Shi-liang, Jing Ji-liang QUASILOCAL ENERGY FOR STATIONARY AXISYMMETRIC EMDA BLACK HOLE 2001 Chin. Phys. 10 234

[1] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[2] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[5] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[6] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[7] Charge transfer in low-energy collisions ofBe3+ and B4+ ions with He
Kun Wang(王堃), Yi-Zhi Qu(屈一至), Chun-Hua Liu(刘春华), Ling Liu(刘玲), Yong Wu(吴勇), H P Liebermann, Robert J. Buenker. Chin. Phys. B, 2020, 29(9): 093401.
[8] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[9] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[10] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[11] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[12] Direct Coulomb explosion of N2O2+ induced by monochromatic extreme ultraviolet photons at 38.5 eV
Min Zhang(张敏), B Najjari, Bang Hai(海帮), Dong-Mei Zhao(赵冬梅), Jian-Ting Lei(雷建廷), Da-Pu Dong(董达谱), Shao-Feng Zhang(张少锋), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(6): 063302.
[13] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter
Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方). Chin. Phys. B, 2020, 29(6): 065207.
No Suggested Reading articles found!