We obtain a new type of conserved quantity of Mei symmetry for the motion of mechanico-electrical coupling dynamical systems under the infinitesimal transformations. A criterion of Mei symmetry for the mechanico-electrical coupling dynamical systems is given. Simultaneously, the condition of existence of the new conserved quantity of Mei symmetry for mechanico-electrical coupling dynamical systems is obtained. Finally, an example is given to illustrate the application of the results.

By using the Jacobi elliptic-function method, this paper obtains the periodic solutions for coupled integrable dispersionless equations. The periodic solutions include some kink and anti-kink solitons.

In this paper, we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear Schrödinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions, one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results, some previous one- and two-soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one- and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.

This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.

In a scale-free network, only a minority of nodes are connected very often, while the majority of nodes are connected rarely. However, what is the ratio of minority nodes to majority nodes resulting from the Matthew effect? In this paper, based on a simple preferential random model, the poor-rich demarcation points are found to vary in a limited range, and form a poor-rich demarcation interval that approximates to k/m ∈ [3,4]. As a result, the (cumulative) degree distribution of a scale-free network can be divided into three intervals: the poor interval, the demarcation interval and the rich interval. The inequality of the degree distribution in each interval is measured. Finally, the Matthew effect is applied to the ABC analysis of project management.

In this paper, an improved projective approach is used to obtain the variable separation solutions with two arbitrary functions of the (2+1)-dimensional Broek-Kaup equation with variable coefficients (VCBK). Based on the derived solitary wave solution and using a known chaotic system, some novel chaotic solutions are investigated.

Motivated by recent developments in quantum fidelity and fidelity susceptibility, we study relations among Lie algebra, fidelity susceptibility and quantum phase transition for a two-state system and the Lipkin-Meshkov-Glick model. We obtain the fidelity susceptibilities for SU(2) and SU(1,1) algebraic structure models. From this relation, the validity of the fidelity susceptibility to signal for the quantum phase transition is also verified in these two systems. At the same time, we obtain the geometric phases in these two systems by calculating the fidelity susceptibility. In addition, the new method of calculating fidelity susceptibility is used to explore the two-dimensional XXZ model and the Bose-Einstein condensate (BEC).

The decoy-state quantum key distribution protocol suggested by Adachi et al. (Phys. Rev. Lett. 99 180503 (2007)) is proven to be secure and feasible with current techniques. It owns two attractive merits, i.e., its longer secure transmission distance and more convenient operation design. In this paper, we first improve the protocol with the aid of local operation and two-way classical communication (2-LOCC). After our modifications, the secure transmission distance is increased by about 20 km, which will make the protocol more practicable.

We study the propagator for an electron moving in a two-dimensional (2D) quadratic saddle-point potential, in the presence of a perpendicular uniform magnetic field. A closed-form expression for the propagator is derived using the Feynmann path integrals.

We study the quantum discord of the bipartite Heisenberg model with the Dzyaloshinski-Moriya (DM) interaction in thermal equilibrium state and discuss the effect of the DM interaction on the quantum discord. The quantum entanglement of the system is also discussed and compared with quantum discord. Our results show that the quantum discord may reveal more properties of the system than quantum entanglement and the DM interaction may play an important role in the Heisenberg model.

This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett.23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.

We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.

Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a Λ-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.

This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that, in the case of M=1, the algorithm has the same performance as the local adiabatic algorithm. However, the algorithm evolves globally only within a small interval, which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.

Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.

Methods of finding quasi-normal modes of non-rotating relativistic stars have been well established, however, none of the existing treatments which take spacetime and fluid oscillations fully into account can determine modes of long decay time, e.g., the p and g mode series, or the f modes for stars with low compactness ratio (M/R). In this paper we show how the quasi-normal modes of long lifetime can be determined through refinements of a treatment originally due to Detweiler and Lindblom. The determination of the p mode series has been argued in the literature to have implication on the life time of gravitational wave sources and stellar stability. In this paper we 1) provide detailed steps in our treatment to facilitate future effort in this direction; 2) correct mistakes in the literature on the formulation; and 3) analyse the accuracy of the quasi-normal mode frequencies obtained and the limitations of the treatment.

An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudo-closed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.

A generalized continuous time random walk model which is dependent on environmental damping is proposed in which the two key parameters of the usual random walk theory: the jumping distance and the waiting time, are replaced by two new ones: the pulse velocity and the flight time. The anomalous diffusion of a free particle which is characterized by the asymptotical mean square displacement <x^{2}(t)>～t^{α} is realized numerically and analysed theoretically, where the value of the power index α is in a region of 0 < α < 2. Particularly, the damping leads to a sub-diffusion when the impact velocities are drawn from a Gaussian density function and the super-diffusive effect is related to statistical extremes, which are called rare-though-dominant events.

We numerically study the dynamics of spiral waves in the excitable system with the excitability modulated by a rectangle wave. The tip trajectories and their variations with the modulation period T are explained by the corresponding spectrum analysis. For a large T, the external modulation leads to the occurrence of more frequency peaks and these frequencies change with the modulation period according to their specific rules, respectively. Some of the frequencies and a primary frequency f_{1} determine the corresponding curvature periods, which are locked into rational multiplies of the modulation period. These frequency-locking behaviours and the limited life-span of the frequencies in their variations with the modulation period constitute many resonant entrainment bands in the T axis. In the main bands, which follow the relation T/T_{12}=m/n, the size variable R_{x} of the tip trajectory is a monotonic increasing function of T. The rest of the frequencies are linear combinations of the two ones. Due to the complex dynamics, many unique tip trajectories appear at some certain T. We find also that spiral waves are eliminated when T is chosen from the end of the main resonant bands. This offers a useful method of controling the spiral wave.

Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchronization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.

A two-degree-of-freedom vibro-impact system having symmetrical rigid stops and subjected to periodic excitation is investigated in this paper. By introducing local maps between different stages of motion in the whole impact process, the Poincar'e map of the system is constructed. Using the Poincar'e map and the Gram-Schmidt orthonormalization, a method of calculating the spectrum of Lyapunov exponents of the above vibro-impact system is presented. Then the phase portraits of periodic and chaotic attractors for the system and the corresponding convergence diagrams of the spectrum of Lyapunov exponents are given out through the numerical simulations. To further identify the validity of the aforementioned computation method, the bifurcation diagram of the system with respect to the bifurcation parameter and the corresponding largest Lyapunov exponents are shown.

This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.

Based on the Chen chaotic system, this paper constructs a new three-dimensional chaotic system with higher order nonlinear term and studies the basic dynamic behaviours of the system. The modified generalized projective synchronization has been observed in the coupled new three-dimensional chaotic system with unknown parameters. Furthermore, based on Lyapunov stability theory, it obtains the control laws and adaptive laws of parameters to make modified generalized projective synchronization of the coupled new three-dimensional chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.

The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.

Previous analyses of fractal modulation were carried out mostly from a signle perspective or a subband, but the analyses from the perspective of multiscale synthesis have not been found yet; while multiscale synthesis is just the essence of the mutlirate diversity which is the most important characteristic of fractal modulation. As for the mutlirate diversity of fractal modulation, previous studies only dealt with the general outspread of its concept, lacked the thorough and intensive quantitative comparison and analysis. In light of the above fact, from the perspective of multiscale synthesis, in this paper we provide a comprehensive analysis of the multirate diversity of fractal modulation and corresponding quantitative analysis. The results show that mutlirate diversity, which is a fusion of frequency diversity and time diversity, pays an acceptable price in spectral efficiency in exchange for a significant improvement in bit error rate. It makes fractal modulation particularly suitable for the channels whose bandwidth and duration parameters are unknown or cannot be predicted to the transmitter. Surely it is clearly of great significance for reliable communications. Moreover, we also attain the ability to flexibly make various rate-bandwidth tradeoffs between the transmitter and the receiver, to freely select the reception time and to expediently control the total bandwidth. Furthermore, the acquisitions or improvements of these fine features could provide support of the technical feasibility for the electromagnetic spectrum control technology in a complex electromagnetic environment.

The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point. Since an adaptive controller based on dynamic compensation mechanism is employed, the exact model of the unified chaotic system is not necessarily required. By choosing appropriate controller parameters, chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.

This paper proposes the new definition of the community structure of the weighted networks that groups of nodes in which the edge's weights distribute uniformly but at random between them. It can describe the steady connections between nodes or some similarity between nodes' functions effectively. In order to detect the community structure efficiently, a threshold coefficient κ to evaluate the equivalence of edges' weights and a new weighted modularity based on the weight's similarity are proposed. Then, constructing the weighted matrix and using the agglomerative mechanism, it presents a weight's agglomerative method based on optimizing the modularity to detect communities. For a network with n nodes, the algorithm can detect the community structure in time O(n^{2}log_{2}^{n}). Simulations on networks show that the algorithm has higher accuracy and precision than the existing techniques. Furthermore, with the change of κ the algorithm discovers a special hierarchical organization which can describe the various steady connections between nodes in groups.

This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0,d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.

In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.

This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a single-lane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control, while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies.

This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm-80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm-0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer.

Using a transient thermoreflectance (TTR) technique, several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metallic nano-films, including the electron-phonon coupling factor G, interfacial thermal resistance R, and thermal conductivity K_{s} of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film, and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams, a complete electron temperature profile can be scanned. Different from the normally used single-layer model, the double-layer model involving interfacial thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization, the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.

The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope (AFM). The roughness measured by this new method can reach the order of angstroms with high quality capillaries.

In order to push the grating-based phase contrast imaging system to be used in hospital and laboratories, this paper designs and develops a novel structure of x-ray scintillator functioning also as an analyser grating, which has been proposed for grating-based x-ray differential phase contrast imaging. According to this design, the scintillator should have a periodical structure in one dimension with the pitch equaling the period of self-image of the phase grating at the Talbot distance, where one half of the pitch is pixellated and is made of x-ray sensitive fluorescent material, such as CsI(Tl), and the remaining part of the pitch is made of x-ray insensitive material, such as silicon. To realize the design, a deep pore array with a high aspect ratio and specially designed grating pattern are successfully manufactured on 5 inch silicon wafer by the photo-assisted electrochemical etching method. The related other problems, such as oxidation-caused geometrical distortion, the filling of CsI(Tl) into deep pores and the removal of inside bubbles, have been overcome. Its pixel size, depth and grating pitch are 3 μm×7.5 μm, 150 μm and 3 μm, respectively. The microstructure of the scintillator has been examined microscopically and macroscopically by scanning electron microscope and x-ray resolution chart testing, respectively. The preliminary measurements have shown that the proposed scintillator, also functioning as an analyser grating, has been successfully designed and developed.

Theoretical investigation of low-lying electronic states and B^{3}Σ_{u}^{-}–X^{3}Σ_{g}^{-} transition properties of selenium dimer using size-extensivity singly and doubly excitation multireference configuration interaction theory with nonrelativistic all-electron basis set and relativistic effective core potential plus its split valence basis set is presented in this paper. The spectroscopic constants of ten low-lying Λ-S bound states have been obtained and compared with experiments. Spin-orbit calculations for coupling between B^{3}Σ_{u}^{-} sates and repulsive ^{1}Π_{u}, ^{5}Π_{u} states have been made to interpret the predissociation mechanisms of the B^{3}Σ_{u}^{-} state. The lifetimes of B^{3}Σ_{u}^{-} (v=0～6) have been calculated with scalar relativistic effects included or excluded, respectively, and reasonably agree with experimental values.

Anion ion photoelectron spectroscopy and density functional theory (DFT) are used to investigate the electronic and structural properties of ScSi_{n}^{-} (n=2sim6) clusters and their neutrals. We find that the structures of ScSi_{n}^{-} are similar to those of Si_{n+1}^{-}. The most stable isomers of ScSi_{n}^{-} cluster anions and their neutrals are similar for n=2, 3 and 5 but different for n=4 and 6, indicating that the charge effect on geometry is size dependent for small scandium-silicon clusters. The low electron binding energy (EBE) tails observed in the spectra of ScSi_{4,6}^{-} can be explained by the existence of less stable isomers. A comparison between ScSi_{n}^{-} and VSi_{n}^{-} clusters shows the effects of metal size and electron configuration on cluster geometries.

The physical trend of group-II tellurides is unexpected and contrary to the conventional wisdom. The present first-principles calculations give fundamental insights into the extent to which group-II telluride compounds present special properties upon mixing the d valence character. Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.

The most stable isomers of Na_{n}B_{m} (m+n=6) clusters and their hydrogen storage properties are investigated by means of density functional theory with a 6-311+G(d) basis set. To study the hydrogen storage properties, all of the stable structures of Na_{n}B_{m}H_{x} (m+n=6) clusters have been optimized. It shows that boron atoms of Na_{n}B_{m} are separated from the other boron atoms, and form satellite BH_{x} (x=3, 4) clusters around the centre, which attach to the system by a bridging bond of a hydrogen atom or an Na atom. Compared with the hydrogen storage capabilities, the Na_{3}B_{3} has the highest hydrogen storage capacity among Na_{n}B_{m} clusters. The binding energies, interaction energies of hydrogen atom with Na_{n}B_{m} clusters and second difference in energy of Na_{3}B_{3}H_{x} clusters have been calculated. The results show that the stability of the Na_{n}B_{m}H_{x} clusters present an odd-even oscillatory effect, as the number of H atoms increases.

The potential energy curves (PECs) of X^{1}Σ_{g}^{+} and A^{1}Π_{u} electronic states of the C_{2} radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the aug-cc-pV6Z basis set for internuclear separations from 0.08 nm to 1.66 nm. With these PECs of the C_{2} radical, the spectroscopic parameters of three isotopologues (^{12}C_{2}, ^{12}C^{13}C and ^{13}C_{2}) have been determined. Compared in detail with previous studies reported in the literature, excellent agreement has been found. The complete vibrational levels G(v), inertial rotation constants Bv and centrifugal distortion constants Dv for the ^{12}C_{2}, ^{12}C^{13}C and ^{13}C_{2} isotopologues have been calculated for the first time for the X^{1}Σ_{g}^{+} and A^{1}Π_{u} electronic states when the rotational quantum number J equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular constants in this paper are reliable and accurate.

The VUV double photoionizations of small molecules (NO, CO, CO_{2}, CS_{2}, OSC and NH_{3}) were investigated with photoionization mass spectroscopy using synchrotron radiation. The double ionization energies of molecules were determined with photoionization efficiency spectroscopy. The total energies of these molecules and their parent dications (NO^{2+}, CO^{2+}, CO_{2}^{2+}, CS_{2}^{2+}, OSC^{2+}and NH_{3}^{2+}) were calculated using the Gaussian 03 program and Gaussian 2 calculations. Then, the adiabatic double ionization energies of the molecules were predicated by using high accuracy energy mode. The experimental double ionization energies of these small molecules were all in reasonable agreement with their respective calculated adiabatic double ionization energies. The mechanisms of double photoionization of these molecules were discussed based on a comparison of our experimental results with those predicted theoretically. The equilibrium geometries and harmonic vibrational frequencies of molecules and their parent dications were calculated by using the MP2 (full) method. The differences in configurations between these molecules and their parent dications were also discussed on the basis of theoretical calculations.

An algorithm has been introduced to calculate molecular bond polarizabilities of thiourea, which supply essential electronic information about the nonresonant Raman excited virtual states. The main dynamical behaviour of the excited virtual states of thiourea is that the Raman excited electrons tend to flow to the N–H bonds and C–N bonds from the S–C bonds because of the electronic repulsion effect. The difference in Raman excited electron relaxation time of thiourea under 514.5-nm and 325-nm excitations has been observed, which quantitatively shows that the Raman scattering process is dependent on the wavelength of the pumping laser. Finally, the distribution of the electrons at the final stage of relaxation is given out through the comparison between the bond electronic densities of the ground states and the bond polarizabilities after deexcitation.

Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard–Jones potential are not well defined. This paper employs a self-consistent method to derive the Lennard–Jones surface force law from the interatomic Lennard–Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

Based on an extended London–Eyring–Polanyi–Sato (LEPS) potential energy surface (PES), the Ba + HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as a function of collision energy for the Ba + HF → BaF + H reaction is presented and the influence of isotope substitution on the differential cross sections (DCSs) and alignments of the product's rotational angular momentum have also been studied. The results suggest that the integral cross sections increase with increasing collision energy, and the vibrational excitation of the reagent has great influence on the DCS. In addition, the product's rotational polarization is very strong as a result of heavy–heavy–light (HHL) mass combination, and the distinct effect of isotope substitution on the stereodynamics is also revealed.

By using the extended Huygens–Fresnel diffraction integral and the method of expanding the aperture function into a finite sum of complex Gaussian functions, an approximate analytical formula of the double-distance propagation for Gaussian beam passing through a tilted cat-eye optical lens and going back along the entrance way in a turbulent atmosphere has been derived. Through numerical calculation, the effects of incidence angle, propagation distance, and structure constant on the propagation properties of a Gaussian beam in a turbulent atmosphere are studied. It is found that the incidence angle creates an unsymmetrical average intensity distribution pattern, while the propagation distance and the structure constant can each create a smooth and symmetrical average intensity distribution pattern. The average intensity peak gradually deviates from the centre, and the central average intensity value decreases quickly with the increase in incidence angle, while a larger structure constant can bring the average intensity peak back to the centre.

In a Doppler-broadened ladder-type cesium atomic system (6S_{1/2}–6P_{3/2}–8S_{1/2}), this paper characterizes electromagnetically induced transparency (EIT) in two different experimental arrangements, and investigates the influence of the double-resonance optical-pumping (DROP) effect on EIT in both arrangements. When the probe laser is weak, DROP is explicitly suppressed. When the probe laser is moderate, population of the intermediate level (6P_{3/2}F'=5) is remarkable, therefore DROP is mixed with EIT. An interesting bimodal spectrum with the broad component due to DROP and the narrow part due to EIT has been clearly observed in cesium 6S_{1/2}F=4–6P_{3/2}F'=5–8S_{1/2}F"=4 transitions.

This paper proposes a ring-out-ring structure of coupled optical resonators to yield coupled-resonator-induced transparency (CRIT). Considering the insertion loss of the coupler, it theoretically deduces the transmission and the effective phase shift. The influences of the insertion loss of the coupler on the transmittance, the effective phase shift, the group index and the CRIT linewidth are fully studied. We find that the increase in multiple m can effectively enhance the normal dispersion and the group index of the proposed structure. Moreover, the specific expression of the group index at resonance is theoretically deduced and discussed for the proposed structure with two rings. The result shows that the multiple m between the lengths of ring 1 and ring 2 can enhance the group index to m times that of the structure with two equal-sized rings at resonance. The control of slow light in the proposed structure is important for applications of highly sensitivity gyroscopes, optical delay lines and optical buffers, etc.

This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm^{2} based on the two-temperature equation, and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range, for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0, 100 nm and 500 nm, it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that, in the intense femtosecond laser ablation of aluminum, the material ablation is mainly induced by the thermal conduction of free electrons, instead of the direct absorption of the laser energy; in addition, the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.

This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.

This work designs a four-platelet periodic multicrystal configuration in the second harmonic generation of ultrashort pulses as a new walk-off-compensating device. It theoretically investigates a proposed active and a typical passive compensating scheme with the undepleted-pump approximation. The result shows that the angular and spectral bandwidths are proportional to the number of crystal pairs as expected, but the temperature tunability is basically unaltered owing to inter-plate pulse interference. At the same time, an analysis reveals that a misuse of the phase mismatch factor is responsible for a historic controversy about pulse interference. A real design of an ultraviolet second harmonic generation (262.5 nm) is considered in a passive periodic β-Barium Borate-calcite configuration, where the inter-plate pulse interference is found to form an azimuthal tuning restriction and to lower plate length tolerance. A subsequent numerical simulation with pump depletion is in good accordance with theoretical prediction.

We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u. The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons, in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadband supercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.

To understand the surface morphology evolution of fused silica induced by 10.6-μm CO_{2} laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.

The built-in electric fields within a varied doping GaAs photocathode may promote the transport of electrons from the bulk to the surface, thus the quantum efficiency of the cathode can be enhanced remarkably. But this enhancement, which might be due to the increase in either the number or the energy of electrons reaching the surface, is not clear at present. In this paper, the energy distributions of electrons in a varied doping photocathode and uniform doping photocathode before and after escaping from the cathode surface are analysed, and the number of electrons escaping from the surface in different cases is calculated for the two kinds of photocathodes. The results indicate that the varied doping structure can not only increase the number of electrons reaching the surface but also cause an offset of the electron energy distribution to high energy. That is the root reason for the enhancement of the quantum efficiency of a varied doping GaAs photocathode.

PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES

We investigate the structural and thermodynamic properties of OsN_{2} by a plane-wave pseudopotential density functional theory method. The obtained lattice constant, bulk modulus and cell volume per unit formula are consistent with the available theoretical data. Moreover, the pressure-induced phase transition of OsN_{2} from pyrite structure to fluorite structure has been obtained. It is found that the transition pressure of OsN_{2} at zero temperature is 67.2 GPa. The bulk modulus B as well as other thermodynamic quantities of fluorite OsN_{2} (including the Grüneisen constant γ and thermal expansion α) on temperatures and pressures have also been obtained.

CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES

This paper investigates the temperature dependence of the specific resistance in annealed V/Al/V/Au (15 nm/85 nm/20 nm/95 nm) contacts on n-Al_{0.4}Ga_{0.6}N. Contacts annealed at 700 du and higher temperatures show Ohmic behaviour. Annealing at 800 du produces the lowest contact resistance. Samples annealed at 800 du have been analysed by using cross-sectional transmission electron microscopy and an energy dispersive x-ray spectrum. Limited reaction depths are observed between V-based contacts and n-AlGaN. The VN grains are found to form in the contact layer of the annealed samples, which can be considered as the key to the successful formation of Ohmic contact. The contact layer adjacent to AlGaN material consists of V–Al–Au–N, AlN and AlAu alloys.

This paper investigates the effects of substitution of Si for Ga on the martensitic transformation behaviours in Ni–Fe–Ga alloys by using optical metallographic microscope and differential scanning calorimetry (DSC) methods. The structure type of Ni_{55.5}Fe_{18}Ga_{26.5–x}Si_{x} alloys is determined by x-ray diffraction (XRD), and the XRD patterns show the microstructure of Ni–Fe–Ga–Si alloys transformed from body-centred tetragonal martensite (with Si content x = 0) to body-centred cubic austenite (with x = 2) at room temperature. The martensitic transformation temperatures of the Ni_{55.5}Fe_{18}Ga_{26.5–x}Si_{x} alloys decrease almost linearly with increasing Si content in the Si content range of x ≤ 3. Thermal treatment also plays an important role on martensitic transformation temperatures in the Ni–Fe–Ga–Si alloy. The valence electronic concentrations, size factor, L2_{1} degree of order and strength of parent phase influence the martensitic transformation temperatures of the Ni–Fe–Ga–Si alloys. An understanding of the relationship between martensitic transformation temperatures and Si content will be significant for designing an appropriate Ni–Fe–Ga–Si alloy for a specific application at a given temperature.

The full-potential linear augmented plane wave method based on density functional theory is employed to investigate the electronic structure of BaSi_{2}. With the constant relaxation time and rigid band approximation, the electrical conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory, further evaluated as a function of carrier concentration. We find that the Seebeck coefficient is more anisotropic than electrical conductivity. The figure of merit of BaSi_{2} is predicted to be quite high at room temperature, implying that optimal doping may be an effective way to improve thermoelectric properties.

Among many epidemic models, one epidemic disease may transmit with the existence of other pathogens or other strains from the same pathogen. In this paper, we consider the case where all of the strains obey the susceptible-infected-susceptible mechanism and compete with each other at the expense of common susceptible individuals. By using the heterogenous mean-field approach, we discuss the epidemic threshold for one of two strains. We confirm the existence of epidemic threshold in both finite and infinite populations subject to underlying epidemic transmission. Simulations in the Barabasi-Albert (BA) scale-free networks are in good agreement with the analytical results.

By molecular dynamics simulations employing an embedded atom method potential, we have investigated structural transformations in single crystal Al caused by uniaxial strain loading along the [001], [011] and [111] directions. We find that the structural transition is strongly dependent on the crystal orientations. The entire structure phase transition only occurs when loading along the [001] direction, and the increased amplitude of temperature for [001] loading is evidently lower than that for other orientations. The morphology evolutions of the structural transition for [011] and [111] loadings are analysed in detail. The results indicate that only 20% of atoms transit to the hcp phase for [011] and [111] loadings, and the appearance of the hcp phase is due to the partial dislocation moving forward on {111}_{fcc} family. For [011] loading, the hcp phase grows to form laminar morphology in four planes, which belong to the {111}_{fcc} family; while for [111] loading, the hcp phase grows into a laminar structure in three planes, which belong to the {111}_{fcc} family except for the (111) plane. In addition, the phase transition is evaluated by using the radial distribution functions.

The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond <S>^{2} / (Nb^{2}) and the shape factor <δ^{*}> depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C_{v}, and the knotted ring chain undergoes gas-liquid-solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains.

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

The electronic structures of BaMgF_{4} crystals containing an F colour centre are studied within the framework of the fully relativistic self-consistent Direc–Slater theory, using a numerically discrete variational (DV-Xα) method. It is concluded from the calculated results that the energy levels of the F colour centre are located in the forbidden band. The optical transition energy from the ground state to the excited state for the F colour centre is about 5.12 eV, which corresponds to the 242-nm absorption band. These calculated results can explain the origin of the absorption bands.

This paper performs first-principles calculations to study the structural, mechanical and electronic properties of the spinels ZnAl_{2}O_{4}, ZnGa_{2}O_{4} and ZnCr_{2}O_{4}, using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl_{2}O_{4}, ZnGa_{2}O_{4} and ZnCr_{2}O_{4} under hydrostatic pressure. The results show that the cubic phases of ZnAl_{2}O_{4}, ZnGa_{2}O_{4} and ZnCr_{2}O_{4} become unstable at about 50 GPa, 40 GPa and 25 GPa, respectively. From analysis of the band structure of the three compounds at equilibrium volume, it obtains a direct band gap of 4.35 eV for ZnAl_{2}O_{4} and 0.89 eV for ZnCr_{2}O_{4}, while ZnGa_{2}O_{4} has an indirect band gap of 2.73 eV.

An investigation of the electronic, elastic and thermodynamic properties of VC under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane-wave basis set, as implemented in the CASTEP code. At elevated pressures, VC is predicted to undergo a structural transition from a relatively open NaCl-type structure to a more dense CsCl-type one. The predicted transition pressure is 520 GPa. The elastic constant, Debye temperature and heat capacity each as a function of pressure and/or temperature of VC are presented for the first time.

Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.

Ni Schottky contacts on AlGaN/GaN heterostructures have been fabricated. The samples are then thermally treated in a furnace with N_{2} ambient at 600 ^{circ}C for different times (0.5, 4.5, 10.5, 18, 33, 48 and 72 h). Current-voltage (I–V) and capacitance–voltage (C–V) relationships are measured, and Schrödinger's and Poisson's equations are self-consistently solved to obtain the characteristic parameters related to AlGaN/GaN heterostructure Schottky contacts: the two-dimensional electron gas (2DEG) sheet density, the polarization sheet charge density, the 2DEG distribution in the triangle quantum well and the Schottky barrier height for each thermal stressing time. Most of the above parameters reduce with the increase of stressing time, only the parameter of the average distance of the 2DEG from the AlGaN/GaN interface increases with the increase of thermal stressing time. The changes of the characteristic parameters can be divided into two stages. In the first stage the strain in the AlGaN barrier layer is present. In this stage the characteristic parameters change rapidly compared with those in the second stage in which the AlGaN barrier layer is relaxed and no strain is present.

We discuss the surface plasmon–polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons.

Polycrystalline ZnO and ITO films on SiO_{2} substrates are prepared by radio frequency (RF) reactive magnetron sputtering. Schottky contacts are fabricated on ZnO films by spin coating with a high conducting polymer, poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as the metal electrodes. The current–voltage measurements for samples on unannealed ZnO films exhibit rectifying behaviours with a barrier height of 0.72 eV (n=1.93). The current for the sample is improved by two orders of magnitude at 1 V after annealing ZnO film at 850 oC, whose barrier height is 0.75 eV with an ideality factor of 1.12. X-ray diffraction, atomic force microscopy and scanning electron microscopy are used to study the properties of the PEDOT:PSS/ZnO/ITO/SiO_{2}. The results are useful for applications such as metal–semiconductor field-effect transistors and UV photodetectors.

The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.

The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-T_{c} radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency f_{z} of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and f_{z} for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.

This paper investigates the nonequilibrium dynamics of two-dimensional Ising spin glass by dynamical Monte Carlo simulations. A new method is developed to quantitatively measure the age of domain growth. Using this method it investigates how temperature shift affects the effective age of domain growth. It finds that the T-shift dependence of the effective age follows the prediction of the droplet model quite well. It also investigates the overlap length between the spin glass states as well as the correlated flips of spins, which are not consistent with the theoretical predictions. The possible reasons are discussed.

This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni_{46}Cu_{4}Mn_{38}Sn_{12} and Ni_{50}CoMn_{34}In_{15} Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.

The microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover, study of the fracture surface indicates that the transgranular fracture contributes to the higher ductility of sintered Ni–Mn–Ga alloy. In addition, the transformation strain in sintered Ni–Mn–Ga alloy is studied for the first time.

A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

The microstructure, optical property and magnetism of nitrogen ion implanted single MgO crystals are studied. A parallel investigation is also performed in an iron ion implanted single MgO sample as a reference. Large structural, optical and magnetic differences are obtained between the nitrogen and iron implanted samples. Room temperature ferromagnetism with a fairly large coercivity field of 300 Oe (1 Oe=79.5775 A/m), a remanence of 38% and a slightly changed optical absorption is obtained in the sample implanted using nitrogen with a dose of 1×10^{18} ions/cm^{2}. Transition metal contamination and defects induced magnetism can be excluded when compared with those of the iron ion implanted sample, and the nitrogen doping is considered to be the main origin of ferromagnetism.

Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes.

A transmission-mode GaAs photocathode includes four layers of glass, Si_{3}N_{4}, Ga_{1-x}Al_{x}As and GaAs. A gradient-doping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 7%. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.

Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO_{2} was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

Cerium (III) nitrate/poly(vinylpyrrolidone) (Ce(NO_{3})_{3}/PVP) composite fibres have been prepared by electrospinning. After calcining the composite fibres in air at 500 ℃, CeO_{2} nanowires were obtained. The characterizations of the as-spun composite fibres and resultant nanowires have been carried out by a scanning electron microscope (SEM), an infrared spectrometer, an x-ray diffractometer and a fluorescence spectrophotometer. Interestingly, some unusual ribbon-like or twin fibres were observed besides the common fibres with circular or elliptic cross sections. We developed a fibre-division model resulting from Coulomb repulsion and solvent vaporization to interpret the formation of the ribbons or twin fibres, which has been confirmed by the SEM studies. Our results also indicate that the formation of the ribbons or twin fibres is less dependent on operation voltage and work distance.

Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructure, morphology and electromagnetic properties are characterized by x-ray diffractometer high-resolution transmission electron microscopy (HRTEM), a field emission environment scanning electron microscope (FEESEM) and a microwave vector network analyser respectively. The experimental results indicate that the as-prepared products are Mn-doped ZnO single crystalline with a hexagonal wurtzite structure, that the growth habit changes due to Mn-doping and that a good magnetic loss property is found in the Mn-doped ZnO products, and the average magnetic loss tangent tanδ_{m} is up to 0.170099 for 3% Mn-doping, while the dielectric loss tangent tanδ_{e} is weakened, owing to the fact that ions Mn^{2+ }enter the crystal lattice of ZnO.

We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.

In view of the important application of GaAs and GaN photocathodes in electron sources, differences in photoemission behaviour, namely the activation process and quantum yield decay, between the two typical types of III–V compound photocathodes have been investigated using a multi-information measurement system. The activation experiment shows that a surface negative electron affinity state for the GaAs photocathode can be achieved by the necessary Cs–O two-step activation and by Cs activation alone for the GaN photocathode. In addition, a quantum yield decay experiment shows that the GaN photocathode exhibits better stability and a longer lifetime in a demountable vacuum system than the GaAs photocathode. The results mean that GaN photocathodes are more promising candidates for electron source emitter use in comparison with GaAs photocathodes.

The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra, carrier concentration in the quantum wells (QWs), energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.

BaBiO_{3}-doped BaTiO_{3} (BB–BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sintering technique. The temperature dependence of resistivity shows that the phase transition of the PTC thermistor ceramic occurs at the Curie temperature, T_{c}=155 ℃, which is higher than that of BaTiO_{3} ( ≤ 130 ℃). Analysis of ac impedance data using complex impedance spectroscopy gives the alternate current (AC) resistance of the PTCR ceramic. By additional use of the complex electric modulus formalism to analyse the same data, the inhomogeneous nature of the ceramic may be unveiled. The impedance spectra reveal that the grain resistance of the BB–BT sample is slightly influenced by the increase of temperature, indicating that the increase in overall resistivity is entirely due to a grain-boundary effect. Based on the dependence of the extent to which the peaks of the imaginary part of electric modulus and impedance are matched on frequency, the conduction mechanism is also discussed for a BB–BT ceramic system.

This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.

This paper theoretically and empirically studies the degree and connectivity of the Internet's scale-free topology at an autonomous system (AS) level. The basic features of scale-free networks influence the normalization constant of degree distribution p(k). It develops a new mathematic model for describing the power-law relationships of Internet topology. From this model we theoretically obtain formulas to calculate the average degree, the ratios of the k_{min}-degree (minimum degree) nodes and the k_{max}-degree (maximum degree) nodes, and the fraction of the degrees (or links) in the hands of the richer (top best-connected) nodes. It finds that the average degree is larger for a smaller power-law exponent λ and a larger minimum or maximum degree. The ratio of the k_{min}-degree nodes is larger for larger λ and smaller k_{min} or k_{max}. The ratio of the k_{max}-degree ones is larger for smaller λ and k_{max} or larger k_{min}. The richer nodes hold most of the total degrees of Internet AS-level topology. In addition, it is revealed that the increased rate of the average degree or the ratio of the k_{min}-degree nodes has power-law decay with the increase of k_{min}. The ratio of the k_{max}-degree nodes has a power-law decay with the increase of k_{max}, and the fraction of the degrees in the hands of the richer 27% nodes is about 73% (the '73/27 rule'). Finally, empirically calculations are made, based on the empirical data extracted from the Border Gateway Protocol, of the average degree, ratio and fraction using this method and other methods, and find that this method is rigorous and effective for Internet AS-level topology.

Betweenness centrality is taken as a sensible indicator of the synchronizability of complex networks. To test whether betweenness centrality is a proper measure of the synchronizability in specific realizations of random networks, this paper adds edges to the networks and then evaluates the changes of betweenness centrality and network synchronizability. It finds that the two quantities vary independently.

In this paper, a new of oxygen fugacity controltechnique that can be widely applied to in-situ measurement of the grain interior electrical conductivities of minerals and rocks is presented for high temperature and high pressure. Inside the sample assembly, a metal and corresponding metal oxide form a solid oxygen buffer. The principle of this technique is to randomly monitor and adjust oxygen fugacity in the large-volume multi-anvil press by changing the types of solid oxygen buffer, metal shielding case and electrodes. At a pressure of up to 5.0 GPa and a temperature of up to 1423 K, the electrical conductivities of the dry peridotite are tested under the conditions of different oxygen fugacities. By virtue of this new technique, more and more reasonable and accurate laboratory electrical property data will be successfully obtained under controlled thermodynamic conditions.

This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial meso-scale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t=24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.

Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour–Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton–Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.

[an error occurred while processing this directive]