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A Sound Field Separation and Reconstruction Technique Based on Reciprocity
Theorem and Fourier Transform ∗
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We show a method to separate the sound field radiated by a signal source from the sound field radiated by
noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on
reciprocity theorem and the Fourier transform. Both the sound field and its gradient on a measurement surface
are needed in the method. Evanescent waves are considered in the method, which ensures a high resolution
reconstruction in the near field region of the signal source when evanescent waves can be measured. A simulation
is given to verify the method and the influence of measurement noise on the method is discussed.
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In a noisy environment, sound field separation
technique is usually utilized to remove the influence of
noise sources for near-field acoustic holography (NAH)
applications and various methods about sound field
separation have been proposed.[1−9] Weinreich and
Arnold proposed a technique for separating outgoing
waves from the source and incoming waves from re-
flections by making the measurement on two closely
spaced parallel surfaces.[1] Frisk et al. derived a
field separation technique based on the spatial Fourier
transform (SFT) method for measuring the reflection
coefficient in the field of underwater acoustics.[2] Al-
though the SFT method was further developed by
several researchers,[3−5] the method requires that the
measurement surface must be regular such as planar,
cylindrical or spherical. Both the boundary element
method (BEM)[6] and the equivalent source method
(ESM)[7−9] can be used to cope with the above prob-
lem. In the BEM, both pressure and velocity are
measured in an enclosed surface, and the standard
Helmholtz integral formulation is used to remove the
influence of noise sources on the measurement sur-
face. To reconstruct the field in the whole space in the
BEM, a sound field reconstruction method is needed.
Replacing the radiating body by a system of estimable
simple sources located within the envelope of the ra-
diator, ESM can separate the sound field from the
sound field radiated by noise sources when pressures
in two layers or pressure and velocity in a layer are
measured. However, it is difficult and it needs expe-
rience to find the optimal positions of the equivalent
sources.[10] In this Letter, a method called the reci-
procity theorem Fourier transform method (RFTM)
is proposed, which combines reciprocity theorem[11,12]

and Fourier transform to realize sound field separa-
tion and reconstruction. Like BEM and ESM, the
RFTM does not need that the measurement surface
must be regular. When sound pressure and velocity
(or pressure’s gradient) are measured on an enclosed
measurement surface, sound field separation and re-

construction can be carried out immediately by the
RFTM without needing experience, which is differ-
ent from ESM. Like NAH,[13,14] evanescent waves are
considered in the RFTM, which can reconstruct the
sound field radiated by a signal source with high ac-
curacy even in the near field of the signal source. The
scattering effects of the signal source are neglected in
this study, and researchers are referred to the works of
Christophe et al.[6] and Chuan et al.[8] for the relevant
analysis.

In this study, the sound field (field means pres-
sure field in the following) is considered in frequency
domain which can transform to time domain by

𝑓(𝑡) =

∫︁ ∞

−∞
𝐹 (𝜔) exp(−𝑖𝜔𝑡)𝑑𝜔,

where 𝑡 presents time, 𝜔 is the angular frequency, and
𝑖2 = −1. Let 𝜙(𝑟) be the total field radiated by a col-
lection of sound sources {𝑆0, 𝑆1, . . . , 𝑆𝑁}, in which 𝑆0

is the signal source and 𝑆1, . . . , 𝑆𝑁 are noise sources,
see Fig. 1(a). Then 𝜙(𝑟) satisfies the inhomogeneous
Helmholtz equation

∇2𝜙(𝑟) + 𝑘2𝜙(𝑟) =

𝑁∑︁
𝑛=0

𝑆𝑛(𝑟), (1)

where 𝑘 = 𝜔/𝑐 is wave number and 𝑐 is sound speed
in the medium. Suppose source 𝑆0 is in a domain 𝐷
whose boundary is 𝜕𝐷, while the other sources are
not included in the domain 𝐷, as shown in Fig. 1(a).
Then the total field in the domain 𝐷 satisfies

∇2𝜙(𝑟) + 𝑘2𝜙(𝑟) = 𝑆0(𝑟), 𝑟 ∈ 𝐷. (2)

The sound field radiated by 𝑆0(𝑟) is presented by
𝜙0(𝑟), then 𝜙0(𝑟) satisfies

∇2𝜙0(𝑟) + 𝑘2𝜙0(𝑟) = 𝑆0(𝑟), (3)

which is the same as Eq. (2) except that 𝑟 is not lim-
ited in 𝐷. It is well known that 𝜙0(𝑟) can be expressed
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as

𝜙0(𝑟) =

∫︁
𝐷

𝑆0(𝑟0)𝐺(𝑟, 𝑟0)𝑑𝑟0, (4)

where 𝐺(𝑟, 𝑟0) is Green’s function in free space and
satisfies

∇2𝐺(𝑟, 𝑟0) + 𝑘2𝐺(𝑟, 𝑟0) = 𝛿(𝑟 − 𝑟0). (5)

Expanding 𝐺(𝑟, 𝑟0) by plan waves[15,16]

𝐺(𝑟, 𝑟0) =

∫︁
Ω

𝛼(𝑘𝑟) exp[𝑖𝑘𝑟 · (𝑟ℎ − 𝑟ℎ0 )

± 𝑖𝑘𝑧(𝑧 − 𝑧0)]𝑑𝑘𝑟, (6)

where Im(𝑘𝑧) > 0, 𝑘 = (𝑘𝑟, 𝑘𝑧), 𝑟 = (𝑟ℎ, 𝑧), + is used
when 𝑧 > 𝑧0, − is used when 𝑧 < 𝑧0, ‖𝑘‖2 = 𝑘 and
the other parameters are listed in Table 1. Substitute
Eq. (6) into Eq. (4) and we consider only the situation
𝑧 > 𝑧0 in the following.

Table 1. Some parameters in Eq. (6) in two- and three-dimensional cases.

𝑟ℎ 𝑘𝑟 𝛼(𝑘𝑟) Ω

Two-dimension 𝑥 𝑘𝑥 −𝑖/(4𝜋𝑘𝑧) {𝑘𝑥| −∞ < 𝑘𝑥 < ∞}
Three-dimension (𝑥, 𝑦) (𝑘𝑥, 𝑘𝑦) −𝑖/(8𝜋2𝑘𝑧) {𝑘𝑟|(𝑘2𝑥 + 𝑘2𝑦) < ∞}

Similar analysis can be used in 𝑧 < 𝑧0. One ob-
tains

𝜙0(𝑟) =

∫︁
Ω

𝛼(𝑘𝑟) exp(𝑖𝑘𝑟 · 𝑟ℎ + 𝑖𝑘𝑧𝑧)∫︁
𝐷

𝑆0(𝑟0) exp(−𝑖𝑘𝑟 · 𝑟ℎ0−𝑖𝑘𝑧𝑧0)𝑑𝑟0𝑑𝑘𝑟. (7)

According to the reciprocity theorem,[11,12] the inte-
gral with respect to 𝑟0 in Eq. (7) can be computed
by the total field 𝜙(𝑟) and its gradient ∇𝜙(𝑟) on the
measurement surface 𝜕𝐷,

𝛽(𝑘𝑟) =

∫︁
𝐷

𝑆0(𝑟0) exp(−𝑖𝑘𝑟 · 𝑟ℎ0 − 𝑖𝑘𝑧𝑧0)𝑑𝑟0

=

∮︁
𝜕𝐷

[exp(−𝑖𝑘 · 𝑟0)∇𝑟0
𝜙(𝑟0)

− 𝜙(𝑟0)∇𝑟0
exp(−𝑖𝑘 · 𝑟0)] · 𝑛𝑑𝑆, (8)

where ∇𝑟0
is the gradient operator with respect to

𝑟0 and 𝑛 is the unit normal vector in outward direc-
tion of 𝜕𝐷, and the detail derivation can be found in
Ref. [11]. From Eq. (8), it is found that both the pres-
sure 𝜙(𝑟) and the normal velocity 𝑣𝑛(𝑟) ∝ ∇𝜙(𝑟) · 𝑛
on the boundary 𝜕𝐷 should be measured to obtain
𝛽(𝑘𝑟). Combining Eqs. (7) and (8), one obtains

𝜙0(𝑟) =

∫︁
Ω

𝛼(𝑘𝑟)𝛽(𝑘𝑟) exp(𝑖𝑘𝑟 · 𝑟ℎ + 𝑖𝑘𝑧𝑧)𝑑𝑘𝑟. (9)

Now, we obtain the field 𝜙0(𝑟) according to the to-
tal field 𝜙(𝑟), and Eq. (9) is the final form of the
RFTM. From Eqs. (8) and (9) one can find that the
shape of measurement surface can be arbitrary as long
as the last integral in Eq. (8) exists and the sound
field radiated by 𝑆0(𝑟) is just the Fourier transform of
𝛼(𝑘𝑟)𝛽(𝑘𝑟) exp(𝑖𝑘𝑧𝑧).

To verify the validation of the RFTM, a simulation
in the two-dimensional case is given.
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Fig. 1. Schematic diagram of the RFTM. (a) Geometry of
the RFTM based sound field separation technique. Only
source 𝑆0 is in the domain 𝐷. Measurement surface is 𝜕𝐷
and 𝑛 is the unit vector in the normal direction of 𝜕𝐷.
(b) Sketch map of the simulation environment. Here 𝑆0 is
composed of six identity point sources with unit strength
and the origin of coordinate system located at its cen-
ter. The distance between neighbor point sources of 𝑆0

is 0.4m, and 𝑆1 is a point source at (−2m, 0), and its
strength equals 10. A plane wave with unit amplitude
propagates along the 𝑥 direction. Domain 𝐷 is a circle
area whose radius is 1.1m and centered at the origin of co-
ordinated system, and 360 measurement points distribute
uniformly on 𝜕𝐷 which is the boundary of 𝐷.

A sketch map of the simulation environment is
given in Fig. 1(b). The frequency of sound 𝑓 is 344 Hz,
sound speed 𝑐 is 344 m/s in the space, and the cor-
responding wavelength 𝜆 is 1m. The signal source
𝑆0 is composed of six identity point sources with unit
strength and origin of coordinate system located at its
center, as shown in Fig. 1(b). The distance between
neighbor point sources of 𝑆0 is 0.4 m, which is less
than half of the wavelength. The noise source 𝑆1 is a
point source at (−2 m, 0), and its strength equals 10.
A plane wave with unit amplitude propagates along
the 𝑥 direction. Then the total field can be expressed
as

𝜙(𝑟) =

∫︁ 6∑︁
𝑛=1

𝛿(𝑟′ − 𝑟0𝑛)𝐺0(𝑟, 𝑟
′)𝑑𝑟′⏟  ⏞  

𝜙0(𝑟)

+ 10

∫︁
𝛿(𝑟′ − 𝑟1)𝐺0(𝑟, 𝑟

′)𝑑𝑟′ + exp(𝑖𝑘𝑥)⏟  ⏞  
Interference

,

where 𝑟 = (𝑥, 𝑧) are the spatial coordinates, 𝑟0𝑛 are
the spatial coordinates of the 𝑛th point source in 𝑆0,
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𝑟1 are the spatial coordinates of 𝑆1, 𝑘 = 2𝜋/𝜆 is the
wavenumber, and

𝐺0(𝑟, 𝑟
′) = − 𝑖

4
𝐻

(1)
0 (𝑘|𝑟 − 𝑟′|)

is Green’s function in two-dimensional free space. Do-
main 𝐷 is a circle area whose radius 𝑅 is 1.1 m and
centered at the origin of the coordinate system in the
space. Here 360 measurement points distribute uni-
formly on 𝜕𝐷 which is the boundary of 𝐷. Note that
𝐷 is just an area of human choice in the space and
𝜕𝐷 is not a physical boundary. The total field 𝜙(𝑟)
and its gradient ∇𝜙(𝑟) are measured by the measure-
ment points. Substitute 𝜙(𝑟) and ∇𝜙(𝑟) into Eqs. (8)
and (9), 𝜙0(𝑟) which is the field radiated by 𝑆0 can
be reconstructed. When using the last integral of
Eq. (8) to compute 𝛽(𝑘𝑟), ∇𝑟0

𝜙(𝑟0) · 𝑛 is approxi-
mated by the finite difference method. Note that the
integral region of Eq. (9) in the two-dimensional case
is {𝑘𝑥|−∞ < 𝑘𝑥 < ∞}, which is not feasible in numer-
ical calculation. In this simulation, the integral region
of Eq. (9) is changed to {𝑘𝑥| − 𝜉𝑘 < 𝑘𝑥 < 𝜉𝑘} with a

finite real number 𝜉, and the sound field radiated by
𝑆0 is approximated by

𝜙0(𝑟, 𝜉) =

∫︁ 𝜉𝑘

−𝜉𝑘

𝛼(𝑘𝑥)𝛽(𝑘𝑥) exp(𝑖𝑘𝑥𝑥+ 𝑖𝑘𝑧𝑧)𝑑𝑘𝑥.(10)
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Fig. 2. Spatial distribution of the sound field. (a) Real
part of the total field 𝜙(𝑟). (b) Image part of the total
field 𝜙(𝑟). (c) Real part of 𝜙0(𝑟) which is the field ra-
diated by 𝑆0. (d) Image part of 𝜙0(𝑟). (e) Real part of
the field 𝜙0(𝑟, 𝜉 = 4) which is the separated field by the
RFTM. (f) Image part of the field 𝜙0(𝑟, 𝜉 = 4).
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Fig. 3. The effect of noise on the RFTM. (a) Relative error between 𝜙0(𝑟, 𝜉) and 𝜙0(𝑟) under different SNR
conditions when 𝜉 = 4 and 𝑟 = {(𝑥, 𝑧)|𝑥 = 0, 0 < 𝑧 6 5}. (b) Measured field 𝜙𝑁 (𝑟) under different SNRs. (c) The
value of log10 𝛽(𝑘𝑟) under different SNR conditions. (d) Relative error between 𝜙0(𝑟, 𝜉) and 𝜙0(𝑟) when SNR=20 dB
and 𝑟 = {(𝑥, 𝑧)|𝑥 = 0, 0 < 𝑧 6 5} under different 𝜉.

The simulation results are shown in Fig. 2. The
real part and the imaginary part of the total field 𝜙(𝑟)
are given in Figs. 2(a) and 2(b), respectively, which are
very different from the field radiated by 𝑆0 as shown in
Figs. 2(c) and 2(d). The real part and imaginary part
of 𝜙0(𝑟, 𝜉) obtained by Eq. (10) are given in Figs. 2(e)
and 2(f), respectively. One can find that 𝜙0(𝑟, 𝜉) is
nearly the same as 𝜙0(𝑟) even in the near field of 𝑆0.
In addition, the locations of different point sources of
𝑆0 can be identified as shown in Fig. 2(e), even though
the distance between neighbor point sources of 𝑆0 is

less than half the wavelength for the evanescent waves
considered in the RFTM. Defining relative error be-
tween 𝜙0(𝑟, 𝜉) and 𝜙0(𝑟) as

𝐸𝑟𝑟(𝑟, 𝜉) = 20 log10
|𝜙0(𝑟, 𝜉)− 𝜙0(𝑟)|

|𝜙0(𝑟)|
, (11)

and Fig. 3(a) gives the relative error when 𝜉 = 4 and
𝑟 = {(𝑥, 𝑧)|𝑥 = 0, 0 < 𝑧 6 5}. In practice, both 𝜙(𝑟)
and its gradient will be contaminated by measurement
noise during the measurement process. Then the mea-
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sured total field and its derivative in the normal di-
rection on 𝜕𝐷 are

𝜙𝑁 (𝑟) =𝜙(𝑟) + 𝑛1(𝑟), (12)

∇𝜙𝑁 (𝑟) · 𝑛 =∇𝜙(𝑟) · 𝑛+ 𝑛2(𝑟), (13)

where 𝑛1(𝑟) and 𝑛2(𝑟) are noise terms and satisfy
⟨𝑛1(𝑟𝑖)𝑛

*
1(𝑟𝑗)⟩ = 𝜎2𝛿𝑖𝑗 , ⟨𝑛2(𝑟𝑖)𝑛

*
2(𝑟𝑗)⟩ = 𝑘2𝜎2𝛿𝑖𝑗 ,

⟨𝑛1(𝑟𝑖)𝑛
*
2(𝑟𝑗)⟩ = 0, ⟨⟩ refers to average, 𝑟𝑖 and 𝑟𝑗

are two points in the space, * refers to complex con-
jugation, and 𝛿𝑖𝑗 is the Kronecker delta function. For
the convenience of analysis, the signal-to-noise ratio
(SNR) is defined as

SNR = 10log10

[︁ 1

𝑁𝜎2

𝑁∑︁
𝑛=1

|𝜙(𝑟𝑛)|2
]︁
, (14)

where 𝑁 is the total number of the measurement
points on 𝜕𝐷, and 𝑟𝑛 is the location of the 𝑛th mea-
surement point. Assuming that both 𝑛1(𝑟) and 𝑛2(𝑟)
satisfy complex Gauss distribution with zero mean,
Fig. 3(b) gives the measured total field 𝜙𝑁 (𝑟) varies
with 𝜃 (𝜃 is defined in Fig. 1(b)) under different SNRs.
The relative errors between 𝜙0(𝑟, 𝜉) and 𝜙0(𝑟) un-
der different SNR conditions are shown in Fig. 3(a)
when 𝜉 = 4. From Fig. 3(a), it is suggested that
the measurement noise has significant influence on
𝜙0(𝑟, 𝜉) when 𝑧 < 1m. From Eq. (8), one can find that
the measurement noise influences 𝛽(𝑘𝑟) exponentially
when |𝑘𝑥| > 𝑘, see Fig. 3(c), which has significant in-
fluence on 𝜙0(𝑟, 𝜉) in 𝑧 < 𝑅. It can also be found from
Fig. 3(d) that when |𝑘𝑥| > 𝑘 or 𝜉 > 1, the greater the
allowed |𝑘𝑥| or 𝜉 is, the stronger the influence of the
measurement noise on 𝜙0(𝑟, 𝜉) in 𝑧 < 𝑅.

In summary, a sound field separation and recon-
struction technique called the reciprocity theorem
Fourier transform method has been proposed. Both
pressure field and its gradient need be measured on an
enclosed measurement surface in the method. A sim-
ulation is given to verify the validity of the RFTM.
Measurement noise’s influence on the RFTM is dis-
cussed and it shows that the measurement noise will
have a strong influence on the near field of the sig-
nal source 𝑆0 when evanescent waves are considered.

In the real application of the RFTM, both the total
field 𝜙(𝑟) and its gradient ∇𝜙(𝑟) need to be measured
on a measurement surface 𝜕𝐷, then sound field sepa-
ration and reconstruction can be realized by Eqs. (8)
and (9). How many measurement points on the mea-
surement surface are needed in the RFTM is not dis-
cussed in this study. When using numerical methods
to calculate the last integral in Eq. (8), the accuracy
of the integral calculation depends on the number of
measurement points on the measurement surface. If
researchers intend to further knowledge about the re-
lation between the number of measurement points and
the accuracy of the integral calculation, please refer to
any numerical analysis books for the relevant analysis.

We thank Gaokun Yu for useful discussion, and
Jing Chi, Xinyao Zhang and Shuangshuang Jiang for
useful suggestions about writing.
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