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Properties of One-Dimensional Highly Polarized Fermi Gases ∗
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Using both the exact Bethe ansatz method and the variational method, we study properties of the one-dimensional
Fermi polaron. We focus on the binding energy, effective mass, momentum distributions, Tan contact and
correlation functions. As the attraction increases, the impurity is more tightly bound and correlated with the
surrounding particles, and the size of formed polaron decreases. In addition, compared with the Bethe ansatz
method, the variational method is totally qualified to study the one-dimensional Fermi polaron. The intrinsic
reason is that the number of particle-hole excitations in a Fermi sea, caused by a single impurity, is always rather
small. The variational method can be well extended to other impurity systems.
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Due to the high tunability, the ultracold Fermi gas
has been used as a versatile platform to explore vari-
ous many-body phenomena.[1−5] In particular, recent
experimental observations of Fermi polarons in two-
and three-dimensional ultracold atoms[6−9] provide in-
sightful understanding of the quasiparticle physics in
many-body systems,[10] and make the impurity sys-
tem and the associated concept of polarons attract
much attention.[11−15] The Fermi polaron is a dressed
impurity immersed in a Fermi sea, and undergoes
a polaron-molecule transition in two and three di-
mensions as the attraction increases. In addition to
the Fermi polaron, the concept has been extended to
bosonic systems,[16−20] and even the impurity system
with repulsive interactions.[21] The polaron not only
has its own physical uniqueness, but also is the first
step towards the multi-impurity system and even the
imbalanced mixture.[22]

Theoretically, researchers are mainly using varia-
tional methods, including mean field theory, to study
the polaron.[23,24] These methods are perturbative,
based on the number of particle-hole excitations in
the major component.[15,25] However, in one dimen-
sion (1D) the Fermi polaron can be exactly studied by
the Bethe ansatz (BA) method.[26−30] It is a special
case of the 1D spin-1/2 𝛿-function interacting Fermi
gases, whose properties with arbitrary spin popula-
tion imbalance were exactly studied by Yang[31] and
Gaudin.[32] The BA method can be used to test the
quality of other methods.

In this Letter, we utilize both the variational
method and the exact BA method to study proper-
ties of the 1D Fermi polaron. Comparisons between
the results obtained by these two methods are made.
Although the binding energy and effective mass have
been studied in Ref. [25], here we further calculate
momentum distributions, Tan contact and correlation
functions for different attractions. In particular, we

extract the Tan contact from several aspects. The
Tan contact measures the probability of finding two
particles at the same place. It is highly related to
the thermodynamics, the asymptotic behavior of the
momentum distribution tail, and the local density-
density correlation function.[33−35] It is a key prop-
erty of many-body systems. The Tan contact for the
1D Fermi polaron has been calculated by the T-matrix
method,[36] here we further focus on testing the quality
of the variational method. Compared with the exact
BA method, the variational method gives quite good
results, especially the Tan contact. The variational
method is totally qualified to study the 1D Fermi po-
laron, and could give reasonable good results for other
impurity systems.

We consider a 1D highly polarized two-component
fermionic system with a single spin-↓ fermion in a spin-
↑ Fermi sea. The corresponding Hamiltonian can be
written as

𝐻 =
∑︁
𝑘𝜎

𝜖(𝑘, 𝜎)𝑐†𝑘𝜎𝑐𝑘𝜎 + 𝑔
∑︁
𝑘𝑘′𝑞

𝑐†𝑘↑𝑐
†
𝑘′↓𝑐𝑞↓𝑐𝑘+𝑘′−𝑞,↑,

(1)
with 𝜖(𝑘, 𝜎) = 𝑘2𝜎/2 (~ = 1). The masses of fermions
are the same, and are used as the unit of mass,
𝑐†𝑘𝜎 (𝑐𝑘𝜎) is the creation (annihilation) operator of a
fermion with momentum 𝑘 and spin 𝜎. The density
for spin-↑ fermion is denoted as 𝑛↑ = 𝑘F/𝜋, with 𝑘F
being the Fermi momentum. The interaction between
the impurity and other particles is a contact inter-
action and we only consider the attractive case with
negative 𝑔.[21] It is a function of the 1D scattering
length 𝑎 with 𝑔 = −1/𝑎.[37]

Introduced by Chevy,[13] a variational wave func-
tion for the ground state can be written as

|Ψ⟩ = 𝛼0𝑐
†
𝑝↓|0⟩+

∑︁
𝑘1𝑞1

𝛼𝑘1𝑞1𝑐
†
𝑝+𝑞1−𝑘1↓𝑐

†
𝑘1↑𝑐𝑞1↑|0⟩+ . . . ,

(2)
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where |𝑘1(2)| > 𝑘F and |𝑞1| ≤ 𝑘F. The vacuum |0⟩
is defined as a product state of the true vacuum for
spin-↓ fermion and the Fermi sea for spin-↑ fermions.
Here 𝑝 denotes the momentum of the polaron or the
whole system. The first two terms describe zero and
one particle-hole excitations in the Fermi sea. High
order excitations are omitted, and these two terms
can give very good results. Minimizing the functional
⟨Ψ |(𝐻−𝐸)|Ψ⟩, one can obtain the following two cou-
pled equations[14]

− 𝑔−1|𝐸|𝛼0 =
∑︁
𝑘1𝑞1

𝛼𝑘1𝑞1 ,

− 𝑔−1𝐸1
𝑘1𝑞1𝛼𝑘1𝑞1 = 𝛼0 +

∑︁
𝑘2

𝛼𝑘2𝑞1 , (3)

where 𝐸1 = −𝐸 + 𝑔𝑛↑ + 𝜖(𝑝 + 𝑞1 − 𝑘1, ↑) + 𝜖(𝑘1, ↑
)− 𝜖(𝑞1, ↑), and 𝐸 is the ground-state energy, which is
also defined as the energy of the polaron. We have set
the ground-state energy for the non-interacting sys-
tem (𝑔 = 0) to zero. Given a dimensionless parameter
𝑔/𝑛↑, one can solve the above coupled equations, ob-
tain 𝛼0, 𝛼kq and the ground-state energy 𝐸 explicitly
expressed as

𝐸 =
∑︁
𝑞1

1
1
𝑔 +

∑︀
𝑘1

1
𝐸1

𝑘1𝑞1

. (4)

When 𝑝 ≪ 𝑘F, the energy of the polaron under
the quasiparticle picture can be written as 𝐸(𝑝) =
𝐸b+𝑝2/2𝑚*, which is the ground-state energy for the
system with 𝑝 = 0, where 𝐸b is called the binding en-
ergy of the polaron, and 𝑚* is the effective mass of
the polaron. These two quantities are the major char-
acteristics of a polaron. However, with the variational
wave function one can calculate other quantities, like
momentum distributions and correlation functions.

The Hamiltonian Eq. (1) can also be exactly solved
by the BA method.[31] In real space, it can be written
as

𝐻 = − 1

2

∑︁
𝜎

∫︁
𝜑†
𝜎(𝑥)

𝑑2

𝑑𝑥2
𝜑𝜎(𝑥)𝑑𝑥

+ 𝑔

∫︁
𝜑†
↓(𝑥)𝜑

†
↑(𝑥)𝜑↑(𝑥)𝜑↓(𝑥)𝑑𝑥, (5)

where 𝜑†
𝜎(𝑥) is the creation operator of a spin 𝜎

fermion at position 𝑥. After expanding the many-body
wave function with plane waves, the quasi-momenta
𝑘𝑗 of fermions under the periodic boundary condition
satisfies the BA equations[31]

exp(𝑖𝑘𝑗𝐿) =

𝑀∏︁
𝛼=1

(︁𝑘𝑗 − Λ𝛼 + 𝑖𝑔/2

𝑘𝑗 − Λ𝛼 − 𝑖𝑔/2

)︁
,

𝑁∏︁
𝑗=1

(︁Λ𝛼 − 𝑘𝑗 + 𝑖𝑔/2

Λ𝛼 − 𝑘𝑗 − 𝑖𝑔/2

)︁
= −

𝑀∏︁
𝛽=1

(︁Λ𝛼 − Λ𝛽 + 𝑖𝑔

Λ𝛼 − Λ𝛽 − 𝑖𝑔

)︁
,

𝑗 = 1, . . . , 𝑁, 𝛼 = 1, . . . ,𝑀, (6)

where 𝑁 is the number of all particles, 𝑀 = 1 is the
number of spin-↓ particles, and Λ𝛼 are additional 𝑀
quantities which describe down spins. The energy of
a state with a set of 𝑘𝑗 is given by 𝐸 =

∑︀
𝑗 𝑘

2
𝑗/2.

Working in the thermodynamic limit and using the
perturbation method, the binding energy 𝐸b in the
weakly attractive region (|𝑔|/𝑛↑ ≪ 1) is

𝐸b

𝐸F
=

2

𝜋

[︁
𝑦 − 𝜋

2
𝑦2 + (1 + 𝑦2) arctan(𝑦) +𝑂(𝑦3)

]︁
, (7)

with 𝑦 = 𝑔/2𝑘F and the Fermi energy 𝐸F = 𝑘2F/2.
It agrees with McGuire’s calculation.[38] Here 𝑦 is
a dimensionless parameter, which is a scaled 𝑔/𝑛↑.
On the other hand, in the strongly attractive region
(|𝑔|/𝑛↑ ≫ 1), the binding energy and the effective
mass are

𝐸b

𝐸F
= − 2𝑦2 − 1− 4

3𝜋𝑦
+𝑂(𝑦−2), (8)

𝑚* =2 +
2

𝜋𝑦
+𝑂(𝑦−2). (9)

In the strongly attractive limit 𝑦 = −∞, the impurity
forms a very tight pair with a particle in the Fermi sea,
and the effective mass equals 2. In general, for a finite
system one can solve the above coupled BA equations
directly and obtain quasi-momenta 𝑘𝑗 . Then with the
many-body wave function one can calculate the bind-
ing energy, the effective mass and so on. In our nu-
merical calculations, 𝐿 = 1 for the sake of simplicity
and the number of spin-↑ fermions equals 21.
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Fig. 1. The binding energy of polaron versus dimension-
less parameter 𝑦 = 𝑔/2𝑘F, calculated by the variational
method (Labeled by Vari), the numerical BA method
(NBA), the small interaction (SBA) and the large inter-
action (LBA) perturbations (Eqs. (7) and (8)). Inset: En-
largement of the weakly attractive region.

In Fig. 1 we show the binding energy as a function
of the dimensionless parameter 𝑦 (the scaled interac-
tion strength). The results obtained from different
methods agree with each other very well. The relative
error (𝐸Vari

b (𝑦)−𝐸NBA
b (𝑦))/𝐸NBA

b (𝑦) for Fig. 1 is less
than 3.3%. Compared with the BA method, the varia-
tional method gives a very good binding energy, which
can also be seen in Ref. [25]. In the weakly attractive
region (|𝑦| ≪ 1), the impurity slightly interacts with
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particles in the Fermi sea, and under the mean field ap-
proximation the binding energy 𝐸 = 𝑔𝑛↑ = (2𝑦/𝜋)𝐸F,
which is the leading order of Eq. (7). As the attrac-
tion |𝑦| increases, the binding between the impurity
and particles in the Fermi sea becomes stronger and
the binding energy |𝐸b| increases. In the strongly
attractive region, one can think that the impurity
forms a tightly bound pair with a particle in the Fermi
sea. From the two-particle physics the binding energy
𝐸 = −𝑔2/2 = −2𝑦2𝐸F, which is the leading order of
Eq. (8).
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Fig. 2. The effective mass of polaron. Inset: The ground-
state energy versus 𝑝2 for a system with dimensionless
parameter 𝑦 = −2.

Not only the binding energy, we also calculate the
ground-state energy for systems with finite 𝑝. After
linearly fitting the energy versus 𝑝2, one can obtain
the effective mass of polaron. In the inset of Fig. 2
we show the ground-state energy versus 𝑝2 for a typi-
cal system, and a linear relation indeed shows up. In
Fig. 2 we show the effective mass versus the dimension-
less parameter 𝑦. The maximal relative error is around
10%. Compared with the BA method, the variational
method gives quite good results, especially if the rela-
tive error is less than 2.8% when |𝑦| < 1. The effective
mass 𝑚* > 1 because the impurity is dressed by par-
ticles in the Fermi sea. As the attraction |𝑦| increases,
the impurity is more entangled with the Fermi sea
and harder to move with a larger effective mass. In
the strongly attractive region, the impurity is tightly
paired with a particle in the Fermi sea, and the effec-
tive mass 𝑚* → 2.

With the ground-state energy, one can obtain the
variational wave function by solving Eq. (3). Then
other quantities can also be calculated. In Fig. 3 we
show momentum distributions of the major compo-
nent for systems with 𝑝 = 0 and different attractions.
It is defined as 𝑛↑(𝑘) = ⟨Ψ |𝑐†𝑘↑𝑐𝑘↑|Ψ⟩. Distributions
are symmetric about 𝑘 = 0, and we only show the right
half. For systems with 𝑝 ̸= 0, momentum distributions
are asymmetric, but as the attraction increases they
have the same behavior as for systems with 𝑝 = 0.
When the attraction is weak (|𝑦| ≪ 1), the momentum
distribution is basically a step function, and particle-
hole excitations concentrate on the Fermi surface. As

the attraction increases, particles in the Fermi sea are
more entangled with the impurity, and more inner par-
ticles are excited to higher momentum states. How-
ever, there is only one impurity, and no matter how
large the attraction is the overall number of excita-
tions in the Fermi sea is still small. We think this is
the intrinsic reason why the variational method can
work so well. In the inset of Fig. 3 we show the cor-
responding momentum distributions for the impurity,
which are defined as 𝑛↓(𝑘) = ⟨Ψ |𝑐†𝑘↓𝑐𝑘↓|Ψ⟩. There is a
discontinuity at 𝑘 = 0, and 𝑛↓(𝑘 = 0) = |𝛼0|2, which is
the residue of impurity that remains un-excited. The
residual has a significant weight, which also indicates
that the fraction of excited particles is relatively small.
In the strongly attractive region (|𝑦| > 1), every parti-
cle in the Fermi sea has almost the same chance to be
excited out, and there is a peak at finite momentum
in the distribution for impurity.
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Fig. 3. Momentum distributions 𝑛↑(𝑘) for systems with
different 𝑦. Inset: the corresponding momentum distribu-
tions for the impurity.

Now we come to study the Tan contact. For the
1D Fermi polaron, it is defined as

𝐶 = 𝑔2
∫︁

𝑑𝑥⟨Ψ |𝜑†
↑(𝑥)𝜑

†
↓(𝑥)𝜑↓(𝑥)𝜑↑(𝑥)|Ψ⟩, (10)

which measures the probability of finding two particles
with different spins at the same place.[37] Compared
with Eq. (5), the Tan contact is highly related to the
interaction energy and the local density-density cor-
relation function. Using the variational wave function
Eq. (2), the Tan contact can be calculated directly by
being transformed into momentum space. In addition
to the direct calculation, the Tan contact can also be
extracted from the momentum distribution. One of
Tan’s universal relations is

𝑛↓(𝑘 ≫ 𝑘F) = 𝑛↑(𝑘 ≫ 𝑘F) =
𝐶

𝑘4
, (11)

where 𝐶 is the Tan contact. There is a linear relation
between ln𝑛𝜎(𝑘) and ln𝑘 when 𝑘 ≫ 𝑘F (an example
is shown in the inset of Fig. 4). After linearly fitting,
one can extract the Tan contact.

Furthermore, from Tan’s relation between adia-
batic energy and the scattering length, the Tan con-

110301-3

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 35, No. 11 (2018) 110301

tact can be calculated by 𝐶 = 𝑑𝐸/𝑑𝑎.[34] This equa-
tion also suggests that given a Tan contact one can
determine the free energy and any thermodynamic
quantity at zero temperature, which makes the Tan
contact a very important quantity in the thermody-
namics. With the above BA resulted Eqs. (7) and (8),
the Tan contact is

𝐶

𝑘F𝐸F
=

4

𝜋
[2𝑦2 − 𝜋𝑦3 + 2𝑦3arctan(𝑦) +𝑂(𝑦4)],

|𝑦| ≪ 1, (12)
𝐶

𝑘F𝐸F
=2

[︁
− 4𝑦3 +

4

3𝜋
+𝑂(𝑦−1)

]︁
, |𝑦| ≫ 1. (13)

In Fig. 4 we show the Tan contact versus dimension-
less parameter 𝑦, calculated by different methods. All
results agree with each other very well. The relative
errors are less than 3.7%. Then compared with the
BA method, the variational method can also give very
good thermodynamic properties.
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variational wave function. Inset: log-log plot of 𝑛↑(𝑘) for
a system with 𝑦 = −2. The dotted straight line is a fitting
function in form ∝ 1/𝑘4.
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Fig. 5. Density-density correlation functions for systems
with different 𝑦. Inset: the corresponding pair correlation
functions.

Finally, we use the variational method to calculate
the correlation functions which are currently out of
reach for the BA method. The density-density cor-
relation function between different spins is defined as

𝐶D(𝑟) = ⟨Ψ |𝑛↑(𝑟)𝑛↓(0)|Ψ⟩−⟨Ψ |𝑛↑(𝑟)|Ψ⟩⟨Ψ |𝑛↓(0)|Ψ⟩
with 𝑛𝜎(𝑟) = 𝜑†

𝜎(𝑟)𝜑𝜎(𝑟) the density operator. Trans-
lation invariance has been used and only the rela-
tive coordinate matters. In Fig. 5 we show density-
density correlation functions for systems with differ-
ent attractions. Correlation functions are symmetric
about 𝑟 = 0 and we only show the right half. In the
absence of interaction (𝑦 = 0), there is no correlation
between two components. As the attraction increases,
a peak immediately emerges at the center (𝑟 = 0) and
becomes more sharp. This signature indicates the for-
mation of a polaron. The impurity only has significant
correlations with nearby spin-↑ particles. The decay
rate of the correlation function indicates the size of
a polaron. As the attraction increases, the central
peak becomes higher and narrower, which indicates
that the polaron becomes more tightly bound with a
smaller size. In the inset of Fig. 5 we show the cor-
responding pair correlation functions, which are de-
fined as 𝐶P(𝑟) = ⟨Ψ |𝜑†

↑(𝑟)𝜑
†
↓(𝑟)𝜑↓(0)𝜑↑(0)|Ψ⟩. The

pair correlation shows oscillatory decay, the same as
the Friedel oscillation,[39] and the same as the density-
density correlation function, the pair correlation func-
tion becomes stronger as the attraction increases.

In summary, an impurity, immersed in a Fermi
sea with attractive interactions between them, will
be dressed up by surrounding particles to form a po-
laron. It becomes more tightly bound as the attrac-
tion increases. We used both the variational method
and the exact Bethe ansatz method to study prop-
erties of the 1D Fermi polaron. Explicitly, we have
studied the binding energy, effective mass, momen-
tum distributions, Tan contact and correlation func-
tions for systems with different attractions. Compared
with the Bethe ansatz method the variational method
gives very good results. Especially, they give almost
the same Tan contact, which means the same ther-
modynamic properties. The variational method is to-
tally qualified to study properties of 1D Fermi polaron.
The reason why the variational method can work so
well is that there is only one impurity and the num-
ber of caused particle-hole excitations in the Fermi
sea is rather small. It is reasonable to think that the
variational method is also good for other 1D impurity
systems and even for the two- or three-dimensional po-
laron. For example, for the two-impurity system one
just needs to replace the one impurity creation oper-
ator 𝑐†𝑝↓ by 𝑐†𝑝1↓𝑐

†
𝑝2↓ in the variational wave function.

References
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.

80 885
[2] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod.

Phys. 80 1215
[3] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A

and Sen U 2007 Adv. Phys. 56 243
[4] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol

M 2011 Rev. Mod. Phys. 83 1405
[5] Guan X W , Batchelor M T and Lee C H 2013 Rev. Mod.

110301-4

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

http://cpl.iphy.ac.cn
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.85.1633


CHIN.PHYS. LETT. Vol. 35, No. 11 (2018) 110301

Phys. 85 1633
[6] Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M and

Köhl M 2012 Nature 485 619
[7] Schirotzek A, Wu C H , Sommer A and Zwierlein M W 2009

Phys. Rev. Lett. 102 230402
[8] Navon N, Nascimbène S, Chevy F and Salomon C 2010

Science 328 729
[9] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan

P, Bruun G M, Schreck F and Grimm R 2012 Nature 485
615

[10] Massignan P, Zaccanti M and Bruun G M 2014 Rep. Prog.
Phys. 77 034401

[11] Schmidt R, Sadeghpour H R and Demler E 2016 Phys. Rev.
Lett. 116 105302

[12] Yi W and Cui X 2015 Phys. Rev. A 92 013620
[13] Chevy F 2006 Phys. Rev. A 74 063628
[14] Combescot R, Recati A, Lobo C and Chevy F 2007 Phys.

Rev. Lett. 98 180402
[15] Combescot R and Giraud S 2008 Phys. Rev. Lett. 101

050404
[16] Catani J, Lamporesi G, Naik D, Gring M, Inguscio M, Mi-

nardi F, Kantian A and Giamarchi T 2012 Phys. Rev. A 85
023623

[17] Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß
P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C,
Bloch I and Kuhr S 2013 Nat. Phys. 9 235

[18] Scelle R, Rentrop T, Trautmann A, Schuster T and
Oberthaler M K 2013 Phys. Rev. Lett. 111 070401

[19] Jørgensen N B, Wacker L, Skalmstang K T, Parish M M,

Levinsen J, Christensen R S, Bruun G M and Arlt J J 2016
Phys. Rev. Lett. 117 055302

[20] Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell
E A and Jin D S 2016 Phys. Rev. Lett. 117 055301

[21] Scazza F, Valtolina G, Massignan P, Recati A, Amico A,
Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G
2017 Phys. Rev. Lett. 118 083602

[22] Qiao L and Chi C 2017 Chin. Phys. B 26 120304
[23] Nishida Y 2015 Phys. Rev. Lett. 114 115302
[24] Parish M M and Levinsen J 2013 Phys. Rev. A 87 033616
[25] Giraud S and Combescot R 2009 Phys. Rev. A 79 043615
[26] Guan X W 2012 Front. Phys. 7 8
[27] Gharashi S E, Yin X Y, Yan Y and Blume D 2015 Phys.

Rev. A 91 013620
[28] Mao R X, Guan X W and Wu B 2016 Phys. Rev. A 94

043645
[29] You Y Z 2010 Chin. Phys. Lett. 27 080305
[30] Wang Y H and Ma Z Q 2012 Chin. Phys. Lett. 29 080501
[31] Yang C N 1967 Phys. Rev. Lett. 19 1312
[32] Gaudin M 1967 Phys. Lett. A 24 55
[33] Tan S 2008 Ann. Phys. 323 2952
[34] Tan S 2008 Ann. Phys. 323 2971
[35] Tan S 2008 Ann. Phys. 323 2987
[36] Doggen E V H and Kinnunen J J 2013 Phys. Rev. Lett. 111

025302
[37] Barth M and Zwerger W 2011 Ann. Phys. 326 2544
[38] McGuire J B 1966 J. Math. Phys. 7 123
[39] Mao L and Wu B 2011 Surf. Sci. 605 1230

110301-5

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

Reference Title:
Ref

https://doi.org/10.1103/RevModPhys.85.1633
http://cpl.iphy.ac.cn
https://doi.org/10.1103/RevModPhys.85.1633
https://doi.org/10.1038/nature11151
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1126/science.1187582
https://doi.org/10.1126/science.1187582
https://doi.org/10.1038/nature11065
https://doi.org/10.1038/nature11065
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevLett.116.105302
https://doi.org/10.1103/PhysRevA.92.013620
https://doi.org/10.1103/PhysRevA.74.063628
https://doi.org/10.1103/PhysRevLett.98.180402
https://doi.org/10.1103/PhysRevLett.98.180402
https://doi.org/10.1103/PhysRevLett.101.050404
https://doi.org/10.1103/PhysRevLett.101.050404
https://doi.org/10.1103/PhysRevA.85.023623
https://doi.org/10.1103/PhysRevA.85.023623
https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevLett.111.070401
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.118.083602
https://doi.org/10.1088/1674-1056/26/12/120304
https://doi.org/10.1103/PhysRevLett.114.115302
https://doi.org/10.1103/PhysRevA.87.033616
https://doi.org/10.1103/PhysRevA.79.043615
https://doi.org/10.1007/s11467-011-0213-0
https://doi.org/10.1103/PhysRevA.91.013620
https://doi.org/10.1103/PhysRevA.91.013620
https://doi.org/10.1103/PhysRevA.94.043645
https://doi.org/10.1103/PhysRevA.94.043645
https://doi.org/10.1088/0256-307X/27/8/080305
https://doi.org/10.1088/0256-307X/29/8/080501
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1103/PhysRevLett.111.025302
https://doi.org/10.1103/PhysRevLett.111.025302
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1063/1.1704798
https://doi.org/10.1016/j.susc.2011.04.007

	Title
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Fig. 1
	Fig. 2
	Fig. 3
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Fig. 4
	Fig. 5
	References

