
CHIN.PHYS. LETT. Vol. 35, No. 11 (2018) 110201

Solutions to Nonlocal Integrable Discrete Nonlinear Schrödinger Equations via
Reduction ∗

Ya-Hong Hu(胡亚红), Jun-Chao Chen(陈俊超)**

Department of Mathematics, Lishui University, Lishui 323000

(Received 12 August 2018)
Solutions to local and nonlocal integrable discrete nonlinear Schrödinger (IDNLS) equations are studied via
reduction on the bilinear form. It is shown that these solutions to IDNLS equations can be expressed in terms of
the single Casorati determinant under different constraint conditions.
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Recently, the nonlocal nonlinear integrable system
has attracted considerable attention after Ablowitz
and Musslimani found the parity-time (PT) sym-
metry nonlinear Schrödinger (NLS) equation from
a nonlocal reduction of the Ablowitz–Kaup–Newell–
Segur (AKNS) spectral problem.[1,2] Many nonlocal
integrable equations have been established from the
general AKNS scattering problem via the different
symmetry reductions involving the reverse space-time
symmetry, or the partially PT symmetry and the par-
tially reverse space-time symmetry in the higher di-
mensional case.[1−9] These nonlocal systems have po-
tential application in nonlinear PT-symmetry media[4]
and more universal Alice-Bob events.[5,6] Due to the
integrability of such nonlocal models, they can be
treated by classical methods such as inverse scatter-
ing transform, Darboux transformation and bilinear
approach.[10−25]

As integrable discrete analogues of local and non-
local NLS equations, there exist four reductions from
the Ablowitz–Ladik (AL) spectral problem[2,10,23]

𝑖𝜓𝑛,𝑡 =𝜓𝑛+1 + 𝜓𝑛−1 − 2𝜓𝑛

− 𝛿𝜓𝑛𝜓
*
𝑛(𝜓𝑛+1 + 𝜓𝑛−1), (1)

𝑖𝜓𝑛,𝑡 =𝜓𝑛+1 + 𝜓𝑛−1 − 2𝜓𝑛

− 𝛿𝜓𝑛𝜓
*
−𝑛(𝜓𝑛+1 + 𝜓𝑛−1), (2)

𝑖𝜓𝑛,𝑡 =𝜓𝑛+1 + 𝜓𝑛−1 − 2𝜓𝑛

− 𝛾𝜓𝑛𝜓𝑛(−𝑡)(𝜓𝑛+1 + 𝜓𝑛−1), (3)
𝑖𝜓𝑛,𝑡 =𝜓𝑛+1 + 𝜓𝑛−1 − 2𝜓𝑛

− 𝛾𝜓𝑛𝜓−𝑛(−𝑡)(𝜓𝑛+1 + 𝜓𝑛−1), (4)

where 𝛿 = ±1, and 𝛾 is an arbitrary complex con-
stant. The four cases correspond to the standard
AL symmetry, the discrete PT preserved symmetry,
the reverse time discrete symmetry and the reverse
discrete-time symmetry.[2,10,11,17,21,23] Very recently,
a bilinearisation-reduction approach has been used
to derive solutions to Eqs. (1) and (4) uniformly and
these solutions were expressed in terms of double Ca-
sorati determinant.[23] It is noted that for the local
integrable discrete NLS (IDNLS) Eq. (1), its bright
soliton solutions can be expressed by the double Caso-
rati determinant whereas its dark soliton solutions are

given by the single Casorati determinant.[26] There-
fore, the question arises whether nonlocal IDNLS
equations allow the single Casorati determinant solu-
tions or not. To answer this question, our goal in the
present study is to derive general single Casorati de-
terminant solutions to the defocusing local Eq. (1), the
PT-symmetry Eq. (2) and the reverse discrete-time
symmetric Eq. (4). In this Letter, we firstly introduce
the before-reduction IDNLS equation whose solution
is expressed in terms of the single Casorati determi-
nant. Then solutions to local and nonlocal IDNLS
equations are derived by imposing different constraint
conditions.

Let us firstly recall the Casorati solution of the
before-reduction IDNLS equation. According to the
derivation in Ref. [26], the before-reduction IDNLS
equations

𝑖
𝑑𝑢𝑛
𝑑𝑡

+ (𝑐+ 𝑑)𝑢𝑛 − [𝑎𝑏− (𝑎𝑏− 1)𝑢𝑛𝑣𝑛]

· (𝑑𝑢𝑛+1 + 𝑐𝑢𝑛−1) = 0, (5)

− 𝑖
𝑑𝑣𝑛
𝑑𝑡

+ (𝑐+ 𝑑)𝑣𝑛 − [𝑎𝑏− (𝑎𝑏− 1)𝑢𝑛𝑣𝑛]

· (𝑐𝑣𝑛+1 + 𝑑𝑣𝑛−1) = 0 (6)

can be transformed into the bilinear form

(𝑖𝐷𝑡 + 𝑐+ 𝑑)𝑔𝑛 · 𝑓𝑛 − 𝑑𝑔𝑛+1𝑓𝑛−1 − 𝑐𝑔𝑛−1𝑓𝑛+1 = 0,
(7)

(𝑖𝐷𝑡 − 𝑐− 𝑑)ℎ𝑛 · 𝑓𝑛 + 𝑐ℎ𝑛+1𝑓𝑛−1 + 𝑑ℎ𝑛−1𝑓𝑛+1 = 0,
(8)

𝑓𝑛+1𝑓𝑛−1 − 𝑓2𝑛 = (𝑎𝑏− 1)(𝑓2𝑛 − 𝑔𝑛ℎ𝑛), (9)

via the dependent variable transformation 𝑢𝑛 = 𝑔𝑛/𝑓𝑛
and 𝑣𝑛 = ℎ𝑛/𝑓𝑛.

Through the dimensional reduction from bilinear
equations of the Bäcklund transformation of Toda lat-
tice and the discrete two-dimensional Toda lattice, it
is found that the bilinear IDNLS Eqs. (7)–(9) possess
the solution in terms of Casorati determinant

𝑓𝑛 = |𝐹𝑁×𝑁 | = |𝑝𝑛+𝑗−1
𝑖 𝑒𝜉𝑖 + 𝑞𝑛+𝑗−1

𝑖 𝑒𝜂𝑖 |𝑁×𝑁 , (10)
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𝑔𝑛= |𝐺𝑁×𝑁 |=
⃒⃒⃒ 𝑝𝑛+𝑗

𝑖

1− 𝑎𝑝𝑖
𝑒𝜉𝑖 +

𝑞𝑛+𝑗
𝑖

1− 𝑎𝑞𝑖
𝑒𝜂𝑖

⃒⃒⃒
𝑁×𝑁

, (11)

ℎ𝑛=|𝐻𝑁×𝑁 |=
⃒⃒⃒ 𝑝𝑛+𝑗−2𝑖

(1−𝑎𝑝𝑖)−1
𝑒𝜉𝑖+

𝑞𝑛+𝑗−2𝑖

(1−𝑎𝑞𝑖)−1
𝑒𝜂𝑖⃒

𝑁×𝑁
, (12)

with 𝜉𝑖 = 𝑖(𝑎𝑐𝑝𝑖+
𝑏𝑑
𝑝𝑖
)𝑡+𝜉𝑖,0 and 𝜂𝑖 = 𝑖(𝑎𝑐𝑞𝑖+

𝑏𝑑
𝑞𝑖
)𝑡+𝜂𝑖,0,

where the wave numbers 𝑝𝑖 and 𝑞𝑖 need to satisfy the
constraint condition

𝑞𝑖 = −𝑝𝑖
1− 𝑏 1

𝑝𝑖

1− 𝑎𝑝𝑖
. (13)

In the following, we consider reductions for local
and nonlocal IDNLS equations.

(A) The defocusing local IDNLS Eq. (1): Firstly,
we introduce the following diagonal matrices and a
Vandermonde matrix

𝐴 =Diag(𝑎1, 𝑎2, . . . , 𝑎𝑁 ),

𝐵 =Diag(𝑏1, 𝑏2, . . . , 𝑏𝑁 ),

𝐶 =Diag(𝑐1, 𝑐2, . . . , 𝑐𝑁 ), (14)

𝑉𝑞 =
[︁
(−1)𝑁−𝑖

∑︁
1≤𝑘1<𝑘2<···<𝑘𝑁−𝑖≤𝑁

𝑘𝑙 ̸=𝑗

(︁𝑁−𝑖∏︁
𝑙=1

𝑞𝑘𝑙

)︁]︁
𝑁×𝑁

, (15)

with the elements 𝑎𝑖 = (−1)𝑁+1 𝑝𝑖

𝑝𝑖−𝑞𝑖
, 𝑏𝑖 = 1

𝑞𝑛𝑖 𝑒𝜂
′
𝑖

and

𝑐𝑖 =
1−𝑎𝑝𝑖

𝑝𝑖
. For example, when 𝑁 = 1, 2, 3, the Van-

dermonde matrices read

𝑉𝑞 = ( 1 ) , 𝑉𝑞 =

(︂
−𝑞2 −𝑞1
1 1

)︂
,

𝑉𝑞 =

(︃
𝑞2𝑞3 𝑞3𝑞1 𝑞1𝑞2

−𝑞2 − 𝑞3 −𝑞3 − 𝑞1 −𝑞1 − 𝑞2
1 1 1

)︃
.

Meanwhile, we take exponential functions in Ca-
sorati determinants as

exp(𝜉𝑖) = [

𝑁∏︁
𝑘=1
𝑘 ̸=𝑖

(𝑞𝑘 − 𝑝𝑖)]
−1 exp(𝜉′𝑖),

exp(𝜂𝑖) = [

𝑁∏︁
𝑘=1
𝑘 ̸=𝑖

(𝑞𝑘 − 𝑞𝑖)]
−1 exp(𝜂′𝑖), (16)

with 𝜉′𝑖 = 𝑖(𝑎𝑐𝑝𝑖+
𝑏𝑑
𝑝𝑖
)𝑡+𝜉′𝑖,0 and 𝜂′𝑖 = 𝑖(𝑎𝑐𝑞𝑖+

𝑏𝑑
𝑞𝑖
)𝑡+𝜂′𝑖,0.

Due to the gauge freedom, we can find that

𝑓𝑛 = |𝐹 | = |𝐴𝐹𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
1− 𝑞𝑖

𝑝𝑖

+
1

1− 𝑞𝑗
𝑝𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

, (17)

𝑔𝑛 = |𝐺̃| = |𝐶𝐴𝐺𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
1− 𝑞𝑖

𝑝𝑖

1
𝑝𝑖

− 𝑎
1
𝑞𝑖

− 𝑎
+

1

1− 𝑞𝑗
𝑝𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

, (18)

ℎ̃𝑛 = |𝐻̃| = |𝐶−1𝐴𝐻𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
1− 𝑞𝑖

𝑝𝑖

1
𝑞𝑖

− 𝑎
1
𝑝𝑖

− 𝑎
+

1

1− 𝑞𝑗
𝑝𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

, (19)

still satisfy the bilinear IDNLS Eqs. (7)–(9).
To conduct the complex conjugate reduction, we

impose the constraints

𝑞𝑖 =
1

𝑝*𝑖
, 𝑎*𝑐* = 𝑏𝑑,

𝜉
′*
𝑖,0 = − 𝜂

′

𝑖,0,
⃒⃒⃒ 1
𝑝𝑖

− 𝑎
⃒⃒⃒2

= |𝑝𝑖 − 𝑎*|2. (20)

Then, we have the relations

𝐹 *
𝑖𝑗 = 𝐹𝑗𝑖, 𝐺̃*

𝑖𝑗 = 𝐻̃𝑗𝑖, (21)

which means 𝑓*𝑛 = 𝑓𝑛 and 𝑔*𝑛 = ℎ̃𝑛. Thus it immedi-
ately gives 𝑢*𝑛 = 𝑔*𝑛/𝑓

*
𝑛 = ℎ̃𝑛/𝑓𝑛 = 𝑣𝑛.

Moreover, a direct substitution to the constraint
condition (13) yields

1

𝑝𝑖
− 𝑎 = −𝑝

*
𝑖

𝑝𝑖
(𝑝𝑖 − 𝑏), or | 1

𝑝𝑖
− 𝑎|2 = |𝑝𝑖 − 𝑏|2. (22)

Comparing the conditions (20) and (22), we simply
take 𝑏 = 𝑎* and 𝑑 = 𝑐* to ensure the dimensional
constraint condition (13) held.

In addition, if we let 𝑝𝑖 = 𝑘𝑖+𝑖ℎ𝑖 and 𝑎 = 𝑎1+𝑖𝑎2,
then the condition | 1

𝑝𝑖
− 𝑎|2 = |𝑝𝑖 − 𝑎*|2 gives rise

to ℎ𝑖 = −𝑎2 ±
√︀
2𝑎1𝑘𝑖 + 𝑎22 − 𝑘2𝑖 − 1. It requires

2𝑎1𝑘𝑖+𝑎
2
2−𝑘2𝑖 −1 > 0, which means that the discrim-

inant 4(𝑎21 + 𝑎22 − 1) needs to be positive for 𝑘𝑖. That
is to say, the parameter 𝑎 needs to satisfy |𝑎|2 > 1.

Therefore, the before-reduction IDNLS Eqs. (5)
and (6) reduce to the single equation with 𝑣*𝑛 = 𝑢𝑛,
𝑏 = 𝑎*, 𝑑 = 𝑐* and |𝑎|2 > 1. Through the variable
transformations

𝑢𝑛 =
𝜓𝑛√
𝛼
exp

(︁
− 𝑖𝑛𝜃 + 𝑖

𝑒𝑖𝜃 + 𝑒−𝑖𝜃

|𝑎|2
𝑡− 2𝑖𝑡

)︁
,

(23)

𝛼 =
|𝑎|2 − 1

|𝑎|2
, 𝑐 =

𝑒−𝑖𝜃

|𝑎|2
,

one can obtain the defocusing local IDNLS Eq. (1)
with 𝛿 = 1. Finally, we obtain the following theorem
about the dark soliton solution of the IDNLS equa-
tion, which coincides with the result in Ref. [26].

Theorem 1.1: The defocusing local IDNLS Eq. (1)
has the dark soliton solution

𝜓𝑛 =

√︃
|𝑎|2 − 1

|𝑎|2
𝑒
(𝑖𝑛𝜃−𝑖 𝑒𝑖𝜃+𝑒−𝑖𝜃

|𝑎|2
𝑡+2𝑖𝑡) 𝑔𝑛

𝑓𝑛
, (24)

where

𝑓𝑛 =
⃒⃒⃒ 𝛿𝑖𝑗

1− 1
|𝑝𝑖|2

+
1

1− 1
𝑝𝑖𝑝*

𝑗

𝑝𝑛𝑖 𝑝
*𝑛
𝑗 𝑒𝜉

′
𝑖+𝜉

′*
𝑗

⃒⃒⃒
𝑁×𝑁

,

𝑔𝑛 =
⃒⃒⃒ 𝛿𝑖𝑗

1− 1
|𝑝𝑖|2

1
𝑝𝑖
−𝑎

𝑝*𝑖 −𝑎
+

1

1− 1
𝑝𝑖𝑝*

𝑗

𝑝𝑛𝑖 𝑝
*𝑛
𝑗 𝑒𝜉

′
𝑖+𝜉

′*
𝑗

⃒⃒⃒
𝑁×𝑁

,(25)

110201-2
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with 𝜉′𝑖 = 𝑖(𝑎𝑝𝑖

𝑒𝑖𝜃
+ 𝑎*𝑒𝑖𝜃

𝑝𝑖
) 𝑡
|𝑎|2 + 𝜉′𝑖,0 and the parameters

need to satisfy the constraint condition

1

𝑝𝑖
− 𝑎 = −𝑝

*
𝑖

𝑝𝑖
(𝑝𝑖 − 𝑎*). (26)

For example, the defocusing local IDNLS Eq. (1)
possesses a one-soliton solution

𝜓𝑛 =

√︃
|𝑎|2 − 1

|𝑎|2
𝑒
(𝑖𝑛𝜃−𝑖 𝑒𝑖𝜃+𝑒−𝑖𝜃

|𝑎|2
𝑡+2𝑖𝑡)

·
1−𝑎𝑝1

𝑝1(𝑝*
𝑖 −𝑎) + |𝑝1|2𝑛𝑒𝜉

′
1+𝜉

′*
1

1 + |𝑝1|2𝑛𝑒𝜉
′
1+𝜉

′*
1

, (27)

with 𝜉′1 = 𝑖(𝑎𝑝1

𝑒𝑖𝜃
+ 𝑎*𝑒𝑖𝜃

𝑝1
) 𝑡
|𝑎|2 +𝜉

′
1,0, where 𝑎, 𝑝1 and 𝜉′1,0

are arbitrary complex parameters, 𝜃 is an arbitrary
real parameter and these parameters need to satisfy
1
𝑝1

− 𝑎 = −𝑝*
1

𝑝1
(𝑝𝑖 − 𝑎*) and |𝑎|2 > 1.

(B) The PT-symmetry IDNLS Eq. (1): For the sec-
ond nonlocal IDNLS, we take the same diagonal ma-
trices 𝐵 and 𝐶 and the same Vandermonde matrix 𝑉𝑞
in Eq. (14) except for the elements of matrix 𝐴 which
is replaced by 𝑎𝑖 = (−1)𝑁+1 1

𝑝𝑖−𝑞𝑖
. The exponential

functions in Casorati determinants are also changed
the same as Eq. (16). Owing to the gauge freedom,
one can find that

𝑓𝑛 = |𝐹 | = |𝐴𝐹𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
𝑝𝑖 − 𝑞𝑖

+
1

𝑝𝑖 − 𝑞𝑗

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

, (28)

𝑔𝑛 = |𝐺̃| = |𝐶𝐴𝐺𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
𝑝𝑖 − 𝑞𝑖

1
𝑝𝑖

− 𝑎
1
𝑞𝑖

− 𝑎
+

1

𝑝𝑖 − 𝑞𝑗

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

, (29)

ℎ̃𝑛 = |𝐻̃| = |𝐶−1𝐴𝐻𝑉𝑞𝐵|

=
⃒⃒⃒ 𝛿𝑖𝑗
𝑝𝑖 − 𝑞𝑖

1
𝑞𝑖

− 𝑎
1
𝑝𝑖

− 𝑎
+

1

𝑝𝑖 − 𝑞𝑗

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑗 𝑒
𝜂′
𝑗

⃒⃒⃒
𝑁×𝑁

(30)

are still the solution to the bilinear IDNLS Eqs. (7)–
(9).

If we impose the following conditions

𝑞𝑖 = 𝑝*𝑖 , 𝑎*𝑐* = 𝑎𝑐, 𝑏*𝑑* = 𝑏𝑑,

𝜉
′*
𝑖,0 = − 𝜂

′

𝑖,0, |1− 𝑎𝑝𝑖|2 = |1− 𝑎*𝑝𝑖|2, (31)

then we have

𝐹 *
𝑖𝑗(−𝑛) = −𝐹𝑗𝑖(𝑛), 𝐺̃*

𝑖𝑗(−𝑛) = −𝐻̃𝑗𝑖(𝑛), (32)

which leads to 𝑓*−𝑛 = (−1)𝑁𝑓𝑛 and 𝑔*−𝑛 = (−1)𝑁 ℎ̃𝑛.
Thus it immediately reaches 𝑢*−𝑛 =

𝑔*
−𝑛

𝑓*
−𝑛

= ℎ̃𝑛

𝑓𝑛
= 𝑣𝑛.

Furthermore, a direct substitution to the con-
straint condition (13) yields

1−𝑎𝑝𝑖 = − 𝑝𝑖
𝑝*𝑖

(︁
1− 𝑏

𝑝𝑖

)︁
, or |1−𝑎𝑝𝑖|2 =

⃒⃒⃒
1− 𝑏

𝑝𝑖

⃒⃒⃒2
. (33)

If both the equations in the before-reduction IDNLS
Eq. (5) and (6) are consistent, we will require 𝑎* = 𝑎,
𝑏* = 𝑏, 𝑐* = 𝑐 and 𝑑* = 𝑑.

Similarly, let 𝑝𝑖 = 𝑘𝑖 + 𝑖ℎ𝑖, then the constraint
condition |1 − 𝑎𝑝𝑖|2 = |1 − 𝑏

𝑝𝑖
|2 generates ℎ𝑖 =

± 1
𝑎

√︀
−𝑎2𝑘2𝑖 + 2𝑎𝑘𝑖 − 𝑎𝑏. It requires −𝑎2𝑘2𝑖 + 2𝑎𝑘𝑖 −

𝑎𝑏 > 0, which suggests that the discriminant 1 − 𝑎𝑏
needs to be positive for 𝑘𝑖. That is to say, the param-
eters 𝑎 and 𝑏 need to satisfy the condition 𝑎𝑏 < 1.

Therefore, the before-reduction IDNLS Eqs. (5)
and (6) become the single equation (𝑣*−𝑛 = 𝑢𝑛 and
𝑎𝑏 < 1) with the PT symmetry invariance. Through
the variable transformations

𝑢𝑛 =
𝜓𝑛√
𝛼
exp

(︁
− 𝑛𝜃 + 𝑖

𝑒𝜃 + 𝑒−𝜃

𝑎𝑏
𝑡− 2𝑖𝑡

)︁
,

𝛼 = 𝛿
𝑎𝑏− 1

𝑎𝑏
, 𝑐 =

𝑒−𝜃

𝑎𝑏
, 𝑑 =

𝑒𝜃

𝑎𝑏
, (34)

with 𝛿 = 1 (𝑎𝑏 < 0) and 𝛿 = −1 (0 < 𝑎𝑏 < 1), we
obtain the PT-symmetry IDNLS Eq. (1). Finally, we
arrive at the following theorem about the solution of
the nonlocal IDNLS Eq. (1).

Theorem 1.2: The PT-symmetry IDNLS Eq. (1)
has the solution

𝜓𝑛 =

√︂
𝑎𝑏− 1

𝛿𝑎𝑏
𝑒(𝑛𝜃−𝑖 𝑒𝜃+𝑒−𝜃

𝑎𝑏 𝑡+2𝑖𝑡) 𝑔𝑛

𝑓𝑛
, (35)

with 𝛿 = 1(𝑎𝑏 < 0) and 𝛿 = −1(0 < 𝑎𝑏 < 1), where

𝑓𝑛 =
⃒⃒⃒ 𝛿𝑖𝑗
𝑝𝑖 − 𝑝*𝑖

+
1

𝑝𝑖 − 𝑝*𝑗

𝑝𝑛𝑖
𝑝*𝑛𝑗

𝑒𝜉
′
𝑖+𝜉

′*
𝑗

⃒⃒⃒
𝑁×𝑁

,

𝑔𝑛 =
⃒⃒⃒ 𝛿𝑖𝑗
𝑝𝑖 − 𝑝*𝑖

1
𝑝𝑖

− 𝑎
1
𝑝*
𝑖
− 𝑎

+
1

𝑝𝑖 − 𝑝*𝑗

𝑝𝑛𝑖
𝑝*𝑛𝑗

𝑒𝜉
′
𝑖+𝜉

′*
𝑗

⃒⃒⃒
𝑁×𝑁

, (36)

with 𝜉′𝑖 = 𝑖( 𝑝𝑖

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑝𝑖
)𝑡+𝜉′𝑖,0, and the parameters need

to satisfy the constraint condition

1− 𝑎𝑝𝑖 = − 𝑝𝑖
𝑝*𝑖

(︁
1− 𝑏

𝑝𝑖

)︁
. (37)

For example, taking 𝑁 = 1, the solution for the
PT-symmetry IDNLS Eq. (1) reads

𝜓𝑛 =

√︂
𝑎𝑏− 1

𝛿𝑎𝑏
𝑒(𝑛𝜃−𝑖 𝑒𝜃+𝑒−𝜃

𝑎𝑏 𝑡+2𝑖𝑡)

·
𝑝*
1(1−𝑎𝑝1)

𝑝1(1−𝑎𝑝*
1)

+ ( 𝑝1

𝑝*
1
)𝑛𝑒𝜉

′
1+𝜉

′*
1

1 + ( 𝑝1

𝑝*
1
)𝑛𝑒𝜉

′
1+𝜉

′*
1

, (38)

with 𝛿 = 1(𝑎𝑏 < 0) and 𝛿 = −1(0 < 𝑎𝑏 < 1).
Here 𝜉′𝑖 = 𝑖( 𝑝𝑖

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑝𝑖
)𝑡 + 𝜉′𝑖,0, 𝑝1 and 𝜉′1,0 are arbi-

trary complex parameters, 𝑎, 𝑏 and 𝜃 are arbitrary
real parameters and it is necessary for them to satisfy
1− 𝑎𝑝1 = − 𝑝1

𝑝*
1
(1− 𝑏

𝑝1
) and 𝑎𝑏 < 1.
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If we set 𝑝𝑖 = exp(𝛼𝑖 + 𝑖𝛽𝑖), [
(1−𝑎𝑝*

1)
(1−𝑎𝑝1)

] = 𝑒2𝑖𝛾1 and
define 𝜉1 + 𝜉*1 ≡ 2𝜗1, then the modular square of 𝜓𝑛

is given by

|𝜓𝑛|2 = exp(2𝑛𝜃)
⃒⃒⃒1− 𝑎𝑏

𝑎𝑏

⃒⃒⃒
·
[︁
1− 2 sin(2𝑛𝛽1 + 𝛽1 + 𝛾) sin(𝛽1 + 𝛾)

cosh(2𝜗1) + cos(2𝑛𝛽1)

]︁
, (39)

which implies that the singularity of |𝜓𝑛|2 occurs at
𝛽1 = 𝑘𝜋 (𝑘 = ±1,±2, . . .).

(C) The reverse time discrete symmetric IDNLS
Eq. (1): For the nonlocal IDNLS Eq. (1), we fail to
construct its general Casorati determinant solution.
Here we list a one-soliton solution to show the reduc-
tion process. To be specific, taking 𝑁 = 1, one has

𝑢𝑛 =

𝑞1
1−𝑎𝑞1

+ 𝑝1

1−𝑎𝑝1
(𝑝1

𝑞1
)𝑛 𝑒𝜉

′
1

𝑒𝜂
′
1

1 + (𝑝1

𝑞1
)𝑛 𝑒𝜉

′
1

𝑒𝜂
′
1

,

𝑣𝑛 =

1−𝑎𝑝1

𝑝1
+ 1−𝑎𝑞1

𝑞1
( 𝑞1𝑝1

)𝑛 𝑒𝜂
′
1

𝑒𝜉
′
1

1 + ( 𝑞1𝑝1
)𝑛 𝑒𝜂

′
1

𝑒𝜉
′
1

, (40)

𝑢𝑛(−𝑡) =
𝑞1

1−𝑎𝑞1
+ 𝑝1

1−𝑎𝑝1
(𝑝1

𝑞1
)𝑛 𝑒𝜂

′
1

𝑒𝜉
′
1

1 + (𝑝1

𝑞1
)𝑛 𝑒𝜂

′
1

𝑒𝜉
′
1

,

𝑣𝑛(−𝑡) =
1−𝑎𝑝1

𝑝1
+ 1−𝑎𝑞1

𝑞1
( 𝑞1𝑝1

)𝑛 𝑒𝜉
′
1

𝑒𝜂
′
1

1 + ( 𝑞1𝑝1
)𝑛 𝑒𝜉

′
1

𝑒𝜂
′
1

, (41)

with 𝜉′𝑖 = 𝑖(𝑎𝑐𝑝𝑖 +
𝑏𝑑
𝑝𝑖
)𝑡 and 𝜂′𝑖 = 𝑖(𝑎𝑐𝑞𝑖 +

𝑏𝑑
𝑞𝑖
)𝑡. To

keep the term ( 𝑞1𝑝1
)𝑛 in 𝑣𝑛 as the same as the term

(𝑝1

𝑞1
)𝑛 in 𝑢𝑛(−𝑡), only 𝑞1 = −𝑝1 can be chosen, which

yields 𝑣𝑛 =
𝑎2𝑝2

1−1

𝑝2
1

𝑢𝑛(−𝑡) and 𝑢𝑛 =
𝑝2
1

𝑎2𝑝2
1−1

𝑣𝑛(−𝑡). In
this situation, the constraint condition (13) reduces to
𝑝21 = 𝑏

𝑎 . Through the variable transformations

𝑢𝑛 =
𝜓𝑛

𝛼
exp

[︁
2𝑖(

1

𝑎𝑏
− 1)𝑡

]︁
, 𝛼2 =

(𝑎𝑏− 1)2

𝛾𝑏
,

𝑐 = 𝑑 =
1

𝑎𝑏
, (42)

where 𝑎, 𝑏 and 𝛼 are complex constants, we obtain the
reverse time discrete symmetric IDNLS Eq. (1). Thus
a one-soliton solution has the following form

𝜓𝑛 =
𝛼𝑝1

1− 𝑎𝑝1
𝑒−2𝑖( 1

𝑎𝑏−1)𝑡

𝑎𝑝1−1
𝑎𝑝1+1 + (−1)𝑛𝑒

2𝑖
𝑎𝑝1

𝑡

1 + (−1)𝑛𝑒
2𝑖

𝑎𝑝1
𝑡

, (43)

with 𝛼2 = (𝑎𝑏−1)2

𝛾𝑏 and 𝑝21 = 𝑏
𝑎 .

Note that for fixed 𝑎 and 𝑏, the constraint condi-
tion 𝑝2𝑖 = 𝑏

𝑎 does not result in different values of the
wave number 𝑝𝑖 except for its opposite value. There-
fore, in the manner of this reduction, we cannot obtain
the general Casorati determinant solution of the non-
local IDNLS Eq. (1). However, if we consider a pair

reduction for the wave numbers 𝑝𝑖 and 𝑞𝑖, the solution
with even number (2𝑁) solitons can be derived. The
details have been discussed in a separate work.

(D) The reverse discrete-time symmetric IDNLS
Eq. (1): For the nonlocal IDNLS Eq. (1), we define
the diagonal matrices and another Vandermonde ma-
trix as follows:

𝐴 =Diag(𝑎1, 𝑎2 · · · , 𝑎𝑁 ),

𝐵 =Diag(𝑏1, 𝑏2 · · · , 𝑏𝑁 ),

𝐵′ =Diag(𝑏′1, 𝑏
′
2 · · · , 𝑏′𝑁 ), (44)

𝐶 =Diag(𝑐1, 𝑐2 · · · , 𝑐𝑁 ),

𝐶 ′ =Diag(𝑐′1, 𝑐
′
2 · · · , 𝑐′𝑁 ),

𝐷 =Diag(𝑑1, 𝑑2 · · · , 𝑑𝑁 ), (45)
𝐷′ =Diag(𝑑′1, 𝑑

′
2 · · · , 𝑑′𝑁 ),

𝑉𝑝 = [(−1)𝑁−𝑖
∑︁

1≤𝑘1<𝑘2<...<𝑘𝑁−𝑖≤𝑁

𝑘𝑙 ̸=𝑗

(

𝑁−𝑖∏︁
𝑙=1

𝑝𝑘𝑙
)]𝑁×𝑁 ,

(46)

with the elements 𝑎𝑖 = 1
𝑝𝑖−𝑞𝑖

, 𝑏𝑖 = 1
𝑞𝑛𝑖 𝑒𝜂𝑖 , 𝑏′𝑖 =

1
𝑝𝑛
𝑖 𝑒

𝜉𝑖
,

𝑐𝑖 = (−1)𝑁+1∏︀
𝑘 ̸=𝑖

(𝑝𝑘−𝑞𝑖)
, 𝑐′𝑖 = (−1)𝑁+1∏︀

𝑘 ̸=𝑖

(𝑞𝑘−𝑝𝑖)
, 𝑑𝑖 =

𝑝
1/2
𝑖

(1−𝑎𝑝𝑖)1/2
and

𝑑′𝑖 =
𝑞
1/2
𝑖

(1−𝑎𝑞𝑖)1/2
. In this case, the exponential func-

tions in Casorati determinants are changed as

exp(𝜉𝑖) =

𝑁∏︁
𝑘=1
𝑘 ̸=𝑖

(𝑝𝑘 − 𝑞𝑖)
1/2(𝑝𝑘 − 𝑝𝑖)

−1/2 exp(𝜉′𝑖),

exp(𝜂𝑖) =

𝑁∏︁
𝑘=1
𝑘 ̸=𝑖

(𝑞𝑘 − 𝑝𝑖)
1/2(𝑞𝑘 − 𝑞𝑖)

−1/2 exp(𝜂′𝑖), (47)

with 𝜉′𝑖 = 𝑖(𝑎𝑐𝑝𝑖 +
𝑏𝑑
𝑝𝑖
)𝑡 and 𝜂′𝑖 = 𝑖(𝑎𝑐𝑞𝑖 +

𝑏𝑑
𝑞𝑖
)𝑡.

Based on the gauge freedom of tau functions, it
can be checked that

𝑓𝑛 = |𝐹 | = |𝐶𝐴𝐵𝐹𝑉𝑝𝐴−1|

=
⃒⃒⃒
1+Γ𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

(𝑖 = 𝑗) or
𝑝𝑗−𝑞𝑗
𝑝𝑗−𝑞𝑖

(𝑖 ̸= 𝑗)
⃒⃒⃒
𝑁×𝑁

,
(48)

𝑔𝑛 = |𝐺̃| = |𝐷
′−1𝐶𝐴𝐵𝐺𝑉𝑝𝐴

−1𝐷−1|

=
⃒⃒⃒𝑄𝑖

𝑃𝑖
+
𝑃𝑖

𝑄𝑖
Γ𝑖
𝑝𝑛𝑖 𝑒

𝜉′𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

(𝑖=𝑗) or
𝑄𝑖

𝑃𝑗

𝑝𝑗−𝑞𝑗
𝑝𝑗−𝑞𝑖

(𝑖 ̸=𝑗)
⃒⃒⃒
𝑁×𝑁

,

(49)

ℎ̃𝑛 = |𝐻̃| = |𝐷′𝐶𝐴𝐵𝐻𝑉𝑝𝐴
−1𝐷|

=
⃒⃒⃒ 𝑃𝑖

𝑄𝑖
+
𝑄𝑖

𝑃𝑖
Γ𝑖
𝑝𝑛𝑖 𝑒

𝜉′𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

(𝑖 = 𝑗) or
𝑃𝑗

𝑄𝑖

𝑝𝑗−𝑞𝑗
𝑝𝑗−𝑞𝑖

(𝑖 ̸=𝑗)
⃒⃒⃒
𝑁×𝑁

,

(50)

with 𝑃𝑖 =
𝑝
1/2
𝑖

(1−𝑎𝑝𝑖)1/2
, 𝑄𝑖 =

𝑞
1/2
𝑖

(1−𝑎𝑞𝑖)1/2
and Γ𝑖 =

𝑁∏︀
𝑘=1,𝑘 ̸=𝑖

(𝑝𝑘−𝑝𝑖)1/2(𝑞𝑘−𝑞𝑖)1/2(𝑝𝑘−𝑞𝑖)−1/2(𝑞𝑘−𝑝𝑖)−1/2,

still satisfying the bilinear Eqs. (7)–(9).
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On the other hand, using another kind of transfor-
mation, we can obtain

𝑓 ′𝑛 = |𝐹 ′| =
⃒⃒⃒
𝐶 ′𝐵′𝐹𝑉𝑞|

=
⃒⃒⃒
1+Γ𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

(𝑖=𝑗) or
𝑝𝑖−𝑞𝑖
𝑝𝑖−𝑞𝑗

(𝑖 ̸=𝑗)
⃒⃒⃒
𝑁×𝑁

, (51)

ℎ̃′𝑛 = |𝐻 ′| = |𝐷𝐶 ′𝐵′𝐻𝑉𝑞𝐷
′|

=
⃒⃒⃒𝑄𝑖

𝑃𝑖
+
𝑃𝑖

𝑄𝑖
Γ𝑖
𝑞𝑛𝑖 𝑒

𝜂′
𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

(𝑖=𝑗) or
𝑄𝑗

𝑃𝑖

𝑝𝑖−𝑞𝑖
𝑝𝑖−𝑞𝑗

(𝑖 ̸=𝑗)
⃒⃒⃒
𝑁×𝑁

.

(52)

Then, it can be found that

𝐹𝑖𝑗(−𝑛,−𝑡) = 𝐹 ′
𝑗𝑖, 𝐺𝑖𝑗(−𝑛,−𝑡) = 𝐻 ′

𝑗𝑖, (53)

which yields

𝑓−𝑛(−𝑡) = 𝑓 ′𝑛 = |𝐶 ′𝐵′(𝐵−1𝐴−1𝐶−1𝐹𝐴𝑉 −1
𝑝 )𝑉𝑞|

=
|𝐵′||𝐶 ′||𝑉𝑞|
|𝐵||𝐶||𝑉𝑝|

𝑓𝑛, (54)

𝑔−𝑛(−𝑡) = ℎ̃′𝑛 = |𝐷𝐶 ′𝐵′(𝐵−1𝐴−1𝐶−1𝐷
′−1

· 𝐻̃𝐷−1𝐴𝑉 −1
𝑝 )𝑉𝑞𝐷

′
| = |𝐵′||𝐶 ′||𝑉𝑞|

|𝐵||𝐶||𝑉𝑝|
ℎ̃𝑛.
(55)

Thus it immediately reaches 𝑢−𝑛(−𝑡) = 𝑔−𝑛(−𝑡)

𝑓−𝑛(−𝑡)
=

ℎ̃𝑛

𝑓𝑛
= 𝑣𝑛.
Furthermore, through the variable transformations

𝑢𝑛 =
𝜓𝑛

𝛼
exp

(︁
− 𝑛𝜃 + 𝑖

𝑒𝜃 + 𝑒−𝜃

𝑎𝑏
𝑡− 2𝑖𝑡

)︁
,

(56)

𝛼2 =
𝑎𝑏− 1

𝛾𝑎𝑏
, 𝑐 =

𝑒−𝜃

𝑎𝑏
, 𝑑 =

𝑒𝜃

𝑎𝑏
,

where 𝑎, 𝑏, 𝛼 and 𝜃 are complex constants, we obtain
the reverse discrete-time symmetric IDNLS Eq. (1).
Finally, we obtain the following theorem regarding the
solution to the nonlocal IDNLS Eq. (1).

Theorem 1.3: The reverse discrete-time symmetric
IDNLS Eq. (1) has the following solution

𝜓𝑛 = 𝛼𝑒(𝑛𝜃−𝑖 𝑒𝜃+𝑒−𝜃

𝑎𝑏 𝑡+2𝑖𝑡) 𝑔𝑛

𝑓𝑛
, 𝛼2 =

𝑎𝑏− 1

𝛾𝑎𝑏
, (57)

where

𝑓𝑛=
⃒⃒⃒
1 + Γ𝑖

𝑝𝑛𝑖 𝑒
𝜉′𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

(𝑖 = 𝑗) or
𝑝𝑗 − 𝑞𝑗
𝑝𝑗 − 𝑞𝑖

(𝑖 ̸= 𝑗)
⃒⃒⃒
𝑁×𝑁

,

𝑔𝑛=
⃒⃒⃒𝑄𝑖

𝑃𝑖
+
𝑃𝑖

𝑄𝑖
Γ𝑖
𝑝𝑛𝑖 𝑒

𝜉′𝑖

𝑞𝑛𝑖 𝑒
𝜂′
𝑖

(𝑖=𝑗) or
𝑄𝑖

𝑃𝑗

𝑝𝑗−𝑞𝑗
𝑝𝑗−𝑞𝑖

(𝑖 ̸=𝑗)
⃒⃒⃒
𝑁×𝑁

,

(58)

with 𝜉′𝑖 = 𝑖( 𝑝𝑖

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑝𝑖
)𝑡, 𝜂′𝑖 = 𝑖( 𝑞𝑖

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑞𝑖
)𝑡, 𝑃𝑖 =

𝑝
1/2
𝑖

(1−𝑎𝑝𝑖)1/2
, 𝑄𝑖 =

𝑞
1/2
𝑖

(1−𝑎𝑞𝑖)1/2
and Γ𝑖 =

𝑁∏︀
𝑘=1,𝑘 ̸=𝑖

(𝑝𝑘 −

𝑝𝑖)
1/2(𝑞𝑘 − 𝑞𝑖)

1/2(𝑝𝑘 − 𝑞𝑖)
−1/2(𝑞𝑘 − 𝑝𝑖)

−1/2. Here 𝑎, 𝑏,

𝜃, 𝑝𝑖 and 𝑞𝑖 are arbitrary parameters, and they need
to satisfy the constraint condition (13),

𝑞𝑖 =
𝑏− 𝑝𝑖
1− 𝑎𝑝𝑖

. (59)

For example, taking 𝑁 = 1, the solution to reverse
discrete-time symmetric IDNLS Eq. (1) is given by

𝜓𝑛 = 𝛼𝑒(𝑛𝜃−𝑖 𝑒𝜃+𝑒−𝜃

𝑎𝑏 𝑡+2𝑖𝑡)

𝑄1

𝑃1
+ 𝑃1

𝑄1
(𝑝1

𝑞1
)𝑛𝑒𝜉

′
1−𝜂′

1

1 + (𝑝1

𝑞1
)𝑛𝑒𝜉

′
1−𝜂′

1

, (60)

with 𝛼2 = 𝑎𝑏−1
𝛾𝑎𝑏 , 𝑃1 =

𝑝
1/2
1

(1−𝑎𝑝1)1/2
, 𝑄1 =

𝑞
1/2
1

(1−𝑎𝑞1)1/2
,

𝜉′1 = 𝑖( 𝑝1

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑝1
)𝑡 and 𝜂′1 = 𝑖( 𝑞1

𝑏𝑒𝜃
+ 𝑒𝜃

𝑎𝑞1
)𝑡, where 𝑎, 𝑏, 𝜃,

𝑝1 and 𝑞1 are arbitrary complex parameters, and they
need to satisfy the constraint condition 𝑞1 = 𝑏−𝑝1

1−𝑎𝑝1
.

In summary, we have investigated solutions to lo-
cal and nonlocal IDNLS equations via reduction. Due
to the gauge invariance for the before-reduction equa-
tions, tau functions in terms of the single Casorati
determinant are written as several alternative forms.
Based on the different forms of the Casorati determi-
nant, solutions to local and nonlocal IDNLS equations
are derived by imposing the corresponding constraint
conditions.
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