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We study systematically the period-doubled Bloch states for a weakly interacting Bose–Einstein condensate in a
one-dimensional optical lattice. This kind of state is of form 𝜓𝑘 = 𝑒𝑖𝑘𝑥𝜑𝑘(𝑥), where 𝜑𝑘(𝑥) is of a period twice the
optical lattice constant. Our numerical results show how these nonlinear period-doubled states grow out of linear
period-doubled states at a quarter away from the Brillouin zone center as the repulsive interatomic interaction
increases. This is corroborated by our analytical results. We find that all nonlinear period-doubled Bloch states
have both Landau instability and dynamical instability.
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A Bose–Einstein condensate (BEC) in an optical
lattice (OL) has been explored theoretically and ex-
perimentally for its rich physics,[1] such as quantum
phase transition,[2−5] unconventional superfluidity,[6]
and various nonlinear effects.[7−20] In the mean-field
theory, a BEC in an OL becomes a nonlinear periodic
system, which exhibits many features that cannot be
found in a linear periodic system. For example, the
nonlinear periodic system can have loop structures in
its Bloch band.[10−17] Such a nonlinear system can
have a type of solution called gap solitons, which are
localized in space and whose chemical potential lies
in the linear band gap.[18−20] These gap solitons can
never exist in a linear periodic system. There is an-
other type of solutions, which are Bloch-like states
but their periodic parts have a period that is twice
the lattice constant.[21] These period-doubled states
are closely related to the period-doubling phenomenon
that has been observed experimentally.[22]

In this Letter, we investigate these period-doubled
states systematically for a BEC in a one-dimensional
OL. It is found that these states can be Bloch-like
and the corresponding chemical potentials form Bloch-
like bands. Our numerical results show that when the
repulsive interatomic interaction increases from zero,
the period-doubled band begins to emerge around the
quasi-momentum that is a quarter away from the Bril-
louin zone center (see Fig. 2). As the interaction fur-
ther increases, the period-doubled band extends to the
whole Brillouin zone. We have also analyzed the sit-
uation when the interaction is very small. Our ana-
lytical results are very consistent with our numerical
results. Computing their Bogoliubov spectrums, we
further find that all nonlinear period-doubled states
have Landau instability and dynamical instability.

We consider a weakly-interacting BEC in a one-

dimensional OL. In the mean-field regime, this sys-
tem can be well described by the following Gross–
Pitaevskii equation (GPE)[23]

𝑖~
𝜕Φ(𝑟, 𝑡)

𝜕𝑡
= − ~2

2𝑚
∇2Φ(𝑟, 𝑡) + 𝑉 (r̃)Φ(𝑟, 𝑡)

+
4𝜋~2𝑎s
𝑚

|Φ(𝑟, 𝑡)|2Φ(𝑟, 𝑡), (1)

where 𝑎s is the s-wave scattering length, and 𝑚
is the atomic mass. We consider a cigar-shaped
condensate,[24,25] thus we can focus only on the lattice
direction and ignore the other directions. Mathemat-
ically, we can write the matter wave function as

Φ(𝑟, 𝑡) = 𝜙(𝑥̃, 𝑡)𝜙0(𝑦, 𝑧)𝑒
−𝑖(𝐸𝑦+𝐸𝑧)𝑡/~, (2)

where 𝜙0 is the wave function in the transverse di-
rection of the BEC with the corresponding energy
𝐸𝑦 + 𝐸𝑧, which can be approximated by the Gaus-
sian function. Thus Eq. (1) can be reduced to a one-
dimensional form

𝑖~
𝜕𝜙(𝑥̃, 𝑡)

𝜕𝑡
= − ~2

2𝑚

𝜕2𝜙(𝑥̃, 𝑡)

𝜕𝑥̃2
+ 𝑉 (𝑥̃)𝜙(𝑥̃, 𝑡)

+
4𝜋~2𝑎s
𝑚𝐴

|𝜙(𝑥̃, 𝑡)|2𝜙(𝑥̃, 𝑡), (3)

where 𝐴 = 2/|𝜙0(0, 0)|2 is the effective cross sectional
area of the condensate. In the longitudinal direction,
we do not consider the harmonic trap, and the OL
potential is given by

𝑉 (𝑥̃) = 𝑉0 cos
2(𝑘

L
𝑥̃) =

𝑉0
2

cos(2𝑘
L
𝑥̃) +

𝑉0
2
, (4)

where 𝑘
L
= 2𝜋/𝜆 with 𝜆 being the wavelength of the

laser, and 𝑉0 is the lattice depth. After neglecting the
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constant potential 𝑉0/2, the dimensionless GPE is

𝑖
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
= − 1

2

𝜕2Ψ(𝑥, 𝑡)

𝜕𝑥2
+
𝑣

2
cos(𝑥)Ψ(𝑥, 𝑡)

+
𝑐

8
|Ψ(𝑥, 𝑡)|2Ψ(𝑥, 𝑡), (5)

where Ψ(𝑥, 𝑡) =
√︀
𝜋/(𝑁0𝑘L

)𝜙(𝑥̃, 𝑡), with 𝑁0 being
the total number of atoms, 𝑥 is in units of 1/2𝑘

L
, 𝑡

is in units of 𝑚/4~𝑘2
L
, and the potential well depth 𝑣

is in units of 8𝐸r with 𝐸r = ~2𝑘2
L
/2𝑚 the recoil en-

ergy. The interaction constant 𝑐 = 8𝜋𝑎s𝑛0/𝑘
2
L

with
𝑛0 = 𝑁0𝑘L

/(𝜋𝐴) the averaged density of BEC. Sub-
stituting Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝜇𝑡 into Eq. (5), we obtain
the time-independent GPE

− 1

2

𝑑2𝜓(𝑥)

𝑑𝑥2
+
𝑣

2
cos(𝑥)𝜓(𝑥) +

𝑐

8
|𝜓(𝑥)|2𝜓(𝑥)

= 𝜇𝜓(𝑥), (6)

where 𝜇 is the nonlinear eigenvalue, and 𝜓(𝑥) satisfies
the following normalization condition∫︁ 𝑙𝜋

−𝑙𝜋

|𝜓(𝑥)|2𝑑𝑥 = 2𝑙𝜋, (7)

with 𝑙 = 1 for single-period solutions and 𝑙 = 2 for
period-doubled solutions.
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Fig. 1. (Color online) Two types of period-doubled Bloch
states. (a) Type I, whose peaks are around the crests of the
lattice potential, and (b) type II, whose peaks are around
the troughs. The lattice potential is shown in (c). Quasi-
momentum 𝑘 = 0.25, OL depth 𝑉0 = 1𝐸r, and 𝑐 = 0.5.

When 𝑐 = 0, the solutions to Eq. (6) are usual
Bloch waves, which can be expressed as

𝜓0
𝑘(𝑥) = 𝑒𝑖𝑘𝑥𝑢𝑘(𝑥) = 𝑒𝑖𝑘𝑥𝑢𝑘(𝑥+ 2𝜋), (8)

where ~𝑘 is the quasi-momentum. When 𝑐 ̸= 0, in ad-
dition to these usual Bloch waves, there exist solutions
in the form

𝜓𝑘(𝑥) = 𝑒𝑖𝑘𝑥𝜑𝑘(𝑥) = 𝑒𝑖𝑘𝑥𝜑𝑘(𝑥+ 4𝜋). (9)

We call these solutions period-doubled Bloch waves.
Substituting Eq. (9) into Eq. (6), we have

− 1

2

(︁ 𝑑

𝑑𝑥
+ 𝑖𝑘

)︁2

𝜑𝑘 +
𝑣

2
cos(𝑥)𝜑𝑘 +

𝑐

8
|𝜑𝑘|2𝜑𝑘

= 𝜇(𝑘)𝜑𝑘. (10)

These period-doubled Bloch states 𝜑𝑘(𝑥) can be ex-
panded in the following Fourier series

𝜑𝑘(𝑥) =

𝑁∑︁
𝑛=−𝑁

𝑎𝑛𝑒
𝑖𝑛
2 𝑥, (11)

where 𝑁 is the cutoff. Substituting Eq. (11) into
Eq. (10), we have

1

2

(︁𝑛
2
+ 𝑘

)︁2

𝑎𝑛 +
𝑣

4
(𝑎𝑛−2 + 𝑎𝑛+2)

+
𝑐

8

𝑁∑︁
𝑛1=−𝑁

𝑁∑︁
𝑛2=−𝑁

𝑎*𝑛1
𝑎𝑛2

𝑎𝑛−𝑛2+𝑛1
= 𝜇𝑎𝑛. (12)

Numerically solving the above equations for 𝑎𝑛
and 𝜇 together with the normalization condition∑︀𝑁

𝑛=−𝑁 |𝑎𝑛|2 = 1, we can find both the single-period
and period-doubled solutions. The results are plotted
in Figs. 1 and 2 with OL depth 𝑉0 = 1𝐸r. For the
period-doubled Bloch waves, their Brillouin zone is
only half the Brillouin zone of the usual single-period
Bloch waves. Therefore, to compare between the usual
Bloch states and period-doubled solutions, we have
folded up the first Brillouin zone for the usual Bloch
states in Fig. 2.
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Fig. 2. (Color online) Energy bands for period-doubled
Bloch states: type I on the left (red solid curves) and
type II on the right (black solid curves). Energy bands for
single-period (blue dashed curves) are plotted for compar-
ison. Here [(a1), (a2)] 𝑐 = 0.1; [(b1), (b2)] 𝑐 = 0.5; [(c1),
(c2)] 𝑐 = 2.5, and 𝑉0 = 1𝐸r.

There are two types of period-doubled Bloch states
as shown in Fig. 1. For type-I states, mathemati-
cally their coefficients 𝑎𝑛 are all real; physically, their
peaks are around the crests of the lattice potential
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(see Fig. 1(a)). For type II, mathematically their coef-
ficients 𝑎𝑛’s are real for even 𝑛 and pure imaginary for
odd 𝑛; physically, their peaks are around the troughs
of the lattice potential (see Fig. 1(b)).

Similar to the usual Bloch waves, the period-
doubled Bloch states can also form energy bands.
These energy bands in terms of chemical potential
𝜇(𝑘) are plotted in Fig. 2, where they are compared
with the usual Bloch bands. It is clear from Fig. 2
that the period-doubled Bloch bands start at 𝑘 = 1/4,
where the fold-up single-period Bloch bands are de-
generate. As the interaction becomes stronger, that
is, 𝑐 increases, the period-doubled bands extend fur-
ther toward the Brillouin zone center. Around 𝑐 = 2.5,
the lowest period-doubled bands for both types I and
II are extended over the full Brillouin zone. We have
plotted these period-doubled bands for different 𝑐 to-
gether in Fig. 3, where one can see more clearly how
the bands grow as 𝑐 increases. Or, one can view
it reversely and see how these period-doubled Bloch
bands disappear when the interaction 𝑐 is reduced to
zero. These numerical results strongly suggest that
the period-doubled Bloch states are grown out of some
‘seeds’ in the usual single-period Bloch states. In the
following we take a closer look analytically.
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Fig. 3. (Color online) Period-doubled energy bands for
different atomic interactions 𝑐. The upper two panels (a)
and (b) are for type-I period-doubled Bloch states; the
lower two panels (c) and (d) are for type-II states. (a)
From bottom to top, the first bands of type I are for 𝑐
ranging from 0.1 to 1.8 with a step size of 0.1; 𝑉0 = 0.1𝐸r.
(b) From bottom to top, the second bands of type I are for
𝑐 ranging from 0.2 to 4 with a step size of 0.2; 𝑉0 = 0.1𝐸r.
(c) From bottom to top, the first bands of type I are
for 𝑐 ranging from 0.05 to 0.85 with a step size of 0.05;
𝑉0 = 1𝐸r. (d) From bottom to top, the second bands of
type II are for 𝑐 ranging from 0.04 to 0.55 with a step size
of 0.03; 𝑉0 = 10𝐸r.

Considering the linear case 𝑐 = 0 and the lowest
band, with the usual Bloch waves, we can construct
period-doubled states as follows:

𝜙0
𝑘(𝑥) = 𝑐1𝜓

0
𝑘(𝑥) + 𝑐2𝜓

0
𝑘− 1

2
(𝑥)

= 𝑒𝑖𝑘𝑥[𝑐1𝑢𝑘(𝑥) + 𝑐2𝑒
−𝑖𝑥/2𝑢𝑘− 1

2
(𝑥)], (13)

where 𝑐1 and 𝑐2 are complex and satisfy |𝑐1|2+ |𝑐2|2 =
1. These period-doubled states 𝜙0

𝑘(𝑥) are solutions to
Eq. (6) with 𝑐 = 0 only when 𝑘 = 1/4. Our numerical
results show that as 𝑐 decreases to zero the nonlin-
ear period-doubled Bloch states in the lowest bands
shown in Figs. 1–3 are reduced to 𝜙0

1
4

(𝑥) with speci-
fied 𝑐1 and 𝑐2. To specify 𝑐1 and 𝑐2, we need to fix the
phases of the usual Bloch states 𝜑0𝑘(𝑥). In Eq. (11),
our phase convention is taken in such a way that the
largest coefficient 𝑎m is real and positive. With this
phase convention, according to our numerical calcula-
tion, type I is connected to

𝜙0
1/4(𝑥) =

1√
2
[𝜓0

1/4(𝑥)± 𝜓0
−1/4(𝑥)], (14)

and type II is to

𝜙0
1/4(𝑥) =

1√
2
[𝜓0

1/4(𝑥)± 𝑖𝜓0
−1/4(𝑥)]. (15)

The results are similar for the second or higher bands
of period-doubled Bloch states.

The above numerical results have given us clear
guidance on how to obtain some analytical results,
in particular, when 𝑐 is small. When 𝑐 increases
slightly from zero, we observe that two things will
happen. (i) The period-doubled states 𝜙0

1/4(𝑥) will
persist with slightly modified form. (ii) New period-
doubled states slightly away from 𝑘 = 1/4 will emerge.
When 𝑘 ̸= 1/4 and 𝑐 = 0, the states 𝜙0

𝑘(𝑥) in Eq. (13)
are not solutions to Eq. (6) due to the fact that 𝜓0

𝑘

and 𝜓0
𝑘− 1

2

have different eigen energies. When 𝑐 is not
zero, the interaction energy may bridge this energy
gap and render 𝜙0

𝑘(𝑥) as the solutions to Eq. (6).
Based on observation (i), we expect the nonlinear

period-doubled Bloch state to have the following form

𝜓 1
4
(𝑥) ≈

√︂
1

2
−𝛿2[𝜓0

1, 14
(𝑥)± 𝑒𝑖𝜃0𝜓0

1,− 1
4
(𝑥)]

+ 𝛿[𝜓0
2, 14

(𝑥)± 𝑒𝑖𝜃0𝜓0
2,− 1

4
(𝑥)], (16)

where 𝜃0 = 0 for type I and 𝜃0 = 𝜋/2 for type II. The
integers in the subscript of 𝜓0 are band indices as the
states in the second linear Bloch band are involved due
to interaction. Here 𝛿 is small and has the same or-
der of magnitude of 𝑐. Substituting the above 𝜓1/4(𝑥)
into Eq. (6), and keeping to the first-order correction,
we obtain

𝜇 1
4
= 𝜇0

1, 14
+

𝑐

64𝜋

∫︁ 𝜋

−𝜋

|𝜓0
1, 14

± 𝑒𝑖𝜃0𝜓0
1,− 1

4
|4d𝑥. (17)

This result is plotted in Fig. 4(a) as a function of 𝑐
with the red dashed curve for type I and the black
solid curve for type II. The corresponding numerical
results are shown with blue crosses and circles, re-
spectively. It is clear from Fig. 4(a) that our above
approximation is reasonably good.

For observation (ii), we consider period-doubled
states with 𝑘 less than but close to 1/4. In this case
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we only need to consider the lowest linear band and
approximate the nonlinear period-doubled states as

𝜓𝑘(𝑥) =

√︂
1

2
+ 𝛿𝜓0

𝑘(𝑥)± 𝑒𝑖𝜃0

√︂
1

2
− 𝛿𝜓0

𝑘− 1
2
(𝑥). (18)

Substituting Eq. (18) into Eq. (6), we find that the
chemical potential can be approximated as

𝜇𝑘 =
𝜇0
𝑘 + 𝜇0

𝑘− 1
2

2

+
𝑐

64𝜋

∫︁ 𝜋

−𝜋

|𝜓0
𝑘 ± 𝑒𝑖𝜃0𝜓0

𝑘− 1
2
|4𝑑𝑥. (19)

This analytical result is compared with the corre-
sponding numerical ones in Fig. 4(b), where the red
curve is for 𝜃0 = 0 and the black one is for 𝜃0 = 𝜋/2.
The corresponding numerical results are marked with
crosses and circles. We can see that they are very
consistent with each other.
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Fig. 4. (Color online) Comparison between analytical
results and numerical results for chemical potentials of
period-doubled Bloch states. The analytical results are
given by red dashed curves for type I and black solid curves
for type II, and the numerical ones are given by blue cir-
cles and crosses, respectively. (a) Chemical potentials at
𝑘 = 1/4 as a function of the interaction strength 𝑐. (b)
Period-doubled energy bands for 𝑐 = 0.05. As the band
for type I is very narrow, it is zoomed up in the inset.
Here 𝑉0 = 10𝐸r.

The stability of the usual Bloch states
has been studied both theoretically and
experimentally.[11,26−32] It is found that many of the
usual Bloch states near the Brillouin zone edge ±𝑘

L

are unstable, suffering both Landau instability and
dynamical instability. It is worthwhile and also neces-
sary to examine the stability of these period-doubled
Bloch states.

As the details of how to examine Landau instabil-
ity and dynamical instability have been spelled out,[14]
we just briefly summarize the procedure. To study
Landau instability, we need to compute the eigenval-
ues of the following matrix

𝑀𝑘(𝑞) =

⎛⎝L (𝑘 + 𝑞)
𝑐

8
𝜑2𝑘

𝑐

8
𝜑*𝑘

2 L (−𝑘 + 𝑞)

⎞⎠ , (20)

where 𝑞 is the perturbation Bloch wave number, and

L (𝑘) = − 1

2

(︁ 𝜕

𝜕𝑥
+ 𝑖𝑘

)︁2

+
𝑣

2
cos(𝑥)

+
𝑐

4
|𝜑𝑘(𝑥)|2 − 𝜇. (21)

Diagonalizing the matrix 𝑀𝑘(𝑞), we can obtain the
eigenvalues. If 𝑀𝑘(𝑞) is positive definite for all
−0.25 ≤ 𝑞 ≤ 0.25 for period-doubled solutions, the
solution 𝜑𝑘(𝑥) is a local minimum and has no Landau
instability. If 𝑀𝑘(𝑞) has negative eigenvalues for some
𝑞, the Bloch wave is a saddle point and suffers Landau
instability.

For dynamical instability, we need to diagonalize
another matrix 𝜎𝑧𝑀𝑘(𝑞), where

𝜎𝑧 =

(︂
𝐼 0
0 −𝐼

)︂
. (22)

If all eigenvalues of 𝜎𝑧𝑀𝑘(𝑞) are real for all −0.25 ≤
𝑞 ≤ 0.25 for period-doubled solutions, the period-
doubled state is dynamically stable. If there are
complex eigenvalues, the initial small disturbance can
grow exponentially in time, and the state is dynami-
cally unstable. We denote the maximum values among
the imaginary part of eigenvalues of matrix 𝜎𝑧𝑀𝑘(𝑞)
as 𝑀D.
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MD > 0
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
k

L
↽

k ↼kL↽

Fig. 5. (Color online) Dynamical stability phase diagrams
for (a) period-doubled Bloch states of type I in the first
band with 𝑐 = 0.4; (b) period-doubled states of type I of
the second band with 𝑐 = 4. Here 𝑀D denotes the max-
imum values among the imaginary part of eigenvalues of
matrix 𝜎𝑧𝑀𝑘(𝑞); the blank areas are for 𝑀D = 0. Here
𝑉0 = 0.1𝐸r.

In our calculation we consider the states in Fig. 3.
It is found that all period-doubled states of type II
(shown in Figs. 3(c) and 3(d)) have both Landau in-
stability and dynamical instability. All the period-
doubled Bloch states of type I shown in both Figs. 3(a)
and 3(b) have Landau instability. The type-I states
in the first band with higher nonlinear interaction 𝑐 in
Fig. 3(a) have dynamical instability. However, when
𝑐 is small, for a given 𝑘 there are always values of
𝑞 where 𝑀D = 0, corresponding to the blank areas
shown in Fig. 5(a). There are also cases of 𝑀D = 0
for type-I states in the second bands for different 𝑐
as shown in Fig. 5(b). For the reflection symmetry
of results in 𝑘 and 𝑞, only the parameter region of
0 ≤ 𝑘 ≤ 1/4 and 0 ≤ 𝑞 ≤ 1/4 is shown. Neverthe-
less, as it is hard to control the modes of perturbations
in actual experiments, from the point of experiments,
these period-doubled states have dynamical instabil-
ity.
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In conclusion, we have systematically studied
period-doubled Bloch states for a BEC in a one-
dimensional optical lattice. Both our numerical and
analytical results show that these period-doubled
Bloch states can be viewed as growing out of seeds
which are linear period-doubled states. We have found
that all these period-doubled Bloch states suffer both
Landau instability and dynamical instability. Some
phenomena related period-doubled Bloch states have
been observed experimentally.[22] However, it is still
quite challenging to observe these states directly and
clearly in a controlled way due to the fact that these
period-doubled Bloch states are not stable. It would
be interesting in the future to find stable period-
doubled Bloch states by engineering the nonlinear in-
teraction.
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