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Multi-Soliton Solutions for the Coupled Fokas–Lenells System via
Riemann–Hilbert Approach ∗
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We aim to construct multi-soliton solutions for the coupled Fokas–Lenells system which arises as a model for
describing the nonlinear pulse propagation in optical fibers. Starting from the spectral analysis of the Lax pair, a
Riemann–Hilbert problem is presented. Then in the framework of the Riemann–Hilbert problem corresponding
to the reflectionless case, 𝑁 -soliton solutions to the coupled Fokas–Lenells system are derived explicitly.
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The so-called coupled Fokas–Lenells (FL) system[1]

reads⎛⎜⎝
𝑝1
𝑝2
𝑟1
𝑟2

⎞⎟⎠
𝑡

=𝑖

⎛⎜⎝
𝛾𝑢1,𝑥𝑥 − 2𝑝1𝑢1𝑣1 − 𝑝1𝑢2𝑣2 − 𝑝2𝑢1𝑣2
𝛾𝑢2,𝑥𝑥 − 2𝑝2𝑢2𝑣2 − 𝑝2𝑢1𝑣1 − 𝑝1𝑢2𝑣1
−𝛾𝑣1,𝑥𝑥 + 2𝑟1𝑢1𝑣1 + 𝑟1𝑢2𝑣2 + 𝑟2𝑢2𝑣2
−𝛾𝑣2,𝑥𝑥 + 2𝑟2𝑢2𝑣2 + 𝑟2𝑢1𝑣1 + 𝑟1𝑢1𝑣2

⎞⎟⎠ ,(1)

with

𝑝𝑘 = 𝑢𝑘 + 𝑖𝜐𝑢𝑘,𝑥, 𝑟𝑘 = 𝑣𝑘 − 𝑖𝜐𝑣𝑘,𝑥, 𝑘 = 1, 2,

where 𝑢𝑘 and 𝑣𝑘 are complex-valued functions of 𝑥, 𝑡,
while 𝛾 and 𝜐 are nonzero real parameters. The cou-
pled FL system (1) is an integrable generalization of
Manakov’s system that is characterized by an equal
nonlinear interaction between two components. Upon
employing the transformations 𝑣𝑘 = −𝑢*𝑘, 𝑢𝑘 = 𝑒𝑖𝑥𝑞𝑘,
𝑞1 = 𝑞, 𝑞2 = 𝑟 as well as 𝛾 = 2, 𝜐 = 1, the coupled FL
system (1) is then turned into the following form

𝑖𝑞𝑥𝑡 − 2𝑖𝑞𝑥𝑥 + 4𝑞𝑥 − (2|𝑞|2 + |𝑟|2)𝑞𝑥
− 𝑞𝑟*𝑟𝑥 + 2𝑖𝑞 = 0, (2a)

𝑖𝑟𝑥𝑡 − 2𝑖𝑟𝑥𝑥 + 4𝑟𝑥 − (2|𝑟|2 + |𝑞|2)𝑟𝑥
− 𝑟𝑞*𝑞𝑥 + 2𝑖𝑟 = 0, (2b)

which describes the nonlinear pulse propagation in op-
tical fibers by retaining terms up to the next leading
asymptotic order. Here the asterisk represents com-
plex conjugation. Much of the research has been car-
ried out on the coupled FL system (2). For example,
Zhang et al.[2] performed the 𝑛-fold Darboux transfor-
mation method to derive diverse solutions, including
the higher-order soliton, breather and rogue wave so-
lutions. In a follow-up study conducted by Ling et
al.,[3] it was shown that the coupled FL system (2)
possesses a multi-Hamiltonian structure and infinitely
many conservation laws. Based on a generalized Dar-
boux transformation and a limiting process, differ-
ent kinds of one-soliton solutions were revealed, some

of which include bright-dark solitons, dark-anti-dark
solitons as well as breather-like solutions. In addition,
the multi-dark soliton solutions to the coupled FL sys-
tem (2) were found by applying the limit technique.

Of particular concern in the field of nonlinear sci-
ence is to find multi-soliton solutions for nonlinear par-
tial differential equations (NLPDEs). So far, a number
of approaches are available for achieving the goal, in-
cluding the inverse scattering method,[4,5] the Hirota
bilinear method,[6−8] the Darboux transformation
method,[9−11] the Riemann–Hilbert approach[12−19]

and so forth. In recent years, researchers have
shown an increasing interest in applying the Riemann–
Hilbert approach to treat NLPDEs under initial-
boundary value conditions. For example, the cou-
pled derivative Schrödinger equation was investigated
in Ref. [20] and a compact 𝑁 -soliton solution formula
was found. Based on this result, some properties of the
one-soliton solution and asymptotic analysis of the 𝑁 -
soliton solution were discussed. More recently, Zhang
et al.[21] examined the complex Sharma–Tasso–Olver
equation on half line and showed that the solution to
the equation can be expressed in terms of the solution
of a Riemann–Hilbert problem. The objective of this
research is to explore multi-soliton solutions for the
coupled FL system (2) by use of the Riemann–Hilbert
approach.

This section seeks to set up a Riemann–Hilbert
problem for the coupled FL system (2). We be-
gin our discussion by considering the Lax pair
representation[2] of the coupled FL system (2),

Φ𝑥 =𝑈Φ = (𝑖𝜍2𝜎 + 𝜍𝑄)Φ, (3a)

Φ𝑡 =𝑉 Φ =
(︁
2𝑖𝜍2𝜎 + 2𝜍𝑄− 2𝑖𝜎 + 𝑖𝑉0

+ 𝑖𝑉−1𝜍
−1 +

1

2
𝑖𝜍−2𝜎

)︁
Φ, (3b)

where Φ = (𝜓(𝑥, 𝑡), 𝜑(𝑥, 𝑡), 𝜙(𝑥, 𝑡))T is the vector
eigenfunction, the symbol T denotes transpose of the
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vector, and 𝜍 ∈ C is a spectral parameter. Further-
more, 𝜎 = diag(−1, 1, 1),

𝑄 =

⎛⎝ 0 𝑞𝑥 𝑟𝑥
𝑞*𝑥 0 0
𝑟*𝑥 0 0

⎞⎠ ,

𝑉0 =

⎛⎝−|𝑞|2 − |𝑟|2 0 0
0 |𝑞|2 𝑞*𝑟
0 𝑞𝑟* |𝑟|2

⎞⎠ ,

𝑉−1 =

⎛⎝ 0 𝑞 𝑟
−𝑞* 0 0
−𝑟* 0 0

⎞⎠ .

The Lax pair (3) can be further written as the
equivalent form

Φ𝑥 =(𝑖𝜍2𝜎 + 𝑈1)Φ, (4a)
Φ𝑡 =(2𝑖𝜅2𝜎 + 𝑈2)Φ, (4b)

where

𝜅 = 𝜍 − 1

2𝜍
, 𝑈1 = 𝜍𝑄,

𝑈2 =2𝜍𝑄+ 𝑖𝑉0 + 𝑖𝑉−1𝜍
−1.

For our analysis, we here extend Φ into a matrix
and introduce the variable transformation

Φ = 𝐽𝑒𝑖𝜍
2𝜎𝑥+2𝑖𝜅2𝜎𝑡, (5)

with 𝐽 = 𝐽(𝑥, 𝑡; 𝜍) being a new matrix spectral func-
tion. Using Eq. (5), the Lax pair (4) we shall deal with
is written as

𝐽𝑥 = 𝑖𝜍2[𝜎, 𝐽 ] + 𝑈1𝐽, (6a)
𝐽𝑡 =2𝑖𝜅2[𝜎, 𝐽 ] + 𝑈2𝐽, (6b)

where [𝜎, 𝐽 ] = 𝜎𝐽 − 𝐽𝜎.
As to the direct scattering process, we will restrict

our attention to the spectral problem (6a), and the
variable 𝑡 enters as a dummy variable. Now, the ma-
trix Jost solutions 𝐽± for Eq. (6a) are introduced as a
collection of columns, that is,

𝐽± = ([𝐽±]1, [𝐽±]2, [𝐽±]3), (7)

where 𝐽± are uniquely determined by the integral
equations of the Volterra type

𝐽− = I+
∫︁ 𝑥

−∞
𝑒𝑖𝜍

2𝜎(𝑥−𝜉)𝑈1(𝜉)𝐽−(𝜉, 𝜍)

· 𝑒−𝑖𝜍2𝜎(𝑥−𝜉)𝑑𝜉, (8a)

𝐽+ = I−
∫︁ +∞

𝑥

𝑒𝑖𝜍
2𝜎(𝑥−𝜉)𝑈1(𝜉)𝐽+(𝜉, 𝜍)

· 𝑒−𝑖𝜍2𝜎(𝑥−𝜉)𝑑𝜉, (8b)

obeying the asymptotic conditions

𝐽− → I, 𝑥→ −∞, (9a)
𝐽+ → I, 𝑥→ +∞, (9b)

and I denotes the 3 × 3 identity matrix. Analyzing
Eq. (8) directly reveals that [𝐽+]1, [𝐽−]2 and [𝐽−]3 are
analytic for 𝜍 ∈ D− and continuous for 𝜍 ∈ D−∪R∪𝑖R,
whereas [𝐽−]1, [𝐽+]2 and [𝐽+]3 are analytic for 𝜍 ∈ D+

and continuous for 𝜍 ∈ D+ ∪ R ∪ 𝑖R, where

D+ =
{︁
𝜍| arg 𝜍 ∈

(︁
0,
𝜋

2

)︁
∪
(︁
𝜋,

3𝜋

2

)︁}︁
,

D− =
{︁
𝜍| arg 𝜍 ∈

(︁𝜋
2
, 𝜋

)︁
∪
(︁3𝜋

2
, 2𝜋

)︁}︁
.

Indeed, the determinants of 𝐽± are independent for all
𝑥 in light of Abel’s identity and tr𝑄 = 0. Based on the
asymptotic conditions (9), we thus have det 𝐽± = 1 for
𝜍 ∈ R ∪ 𝑖R.

Since both 𝐽−𝐸 and 𝐽+𝐸 are matrix solutions
of the spectral problem (4a) for 𝜍 ∈ R ∪ 𝑖R, where
𝐸 = 𝑒𝑖𝜍

2𝜎𝑥, they must be linearly related by a 3 × 3
scattering matrix 𝑆(𝜍) = (𝑠𝑘𝑗)3×3, namely

𝐽−𝐸 = 𝐽+𝐸 · 𝑆(𝜍), 𝜍 ∈ R ∪ 𝑖R. (10)

It is easy to know det𝑆(𝜍) = 1. Furthermore, we can
see from the analytic property of 𝐽− that 𝑠11 admits
an analytic extension to D+, and 𝑠𝑘𝑗 (𝑘, 𝑗 = 2, 3) ex-
tend to D− analytically.

A Riemann–Hilbert problem to be formulated for
the coupled FL system (2) requires two matrix func-
tions: one is analytic in D+ and the other is analytic
in D−. Let 𝑃1 = 𝑃1(𝑥, 𝜍) be an analytic function of 𝜍,

𝑃1(𝑥, 𝜍) = ([𝐽−]1, [𝐽+]2, [𝐽+]3)(𝑥, 𝜍), (11)

defining in D+. Then, we can investigate the very
large-𝜍 asymptotic behavior of 𝑃1 having the asymp-
totic expansion

𝑃1 = 𝑃
(0)
1 +

𝑃
(1)
1

𝜍
+
𝑃

(2)
1

𝜍2
+𝑂

(︁ 1

𝜍3

)︁
, 𝜍 → ∞. (12)

Inserting Eq. (12) into Eq. (6a) and equating terms
with like powers of 𝜍, we have

𝑂(1) : 𝑖[𝜎, 𝑃
(2)
1 ] +𝑄𝑃

(1)
1 = 𝑃

(0)
1𝑥 ,

𝑂(𝜍) : 𝑖[𝜎, 𝑃
(1)
1 ] +𝑄𝑃

(0)
1 = 0,

𝑂(𝜍2) : 𝑖[𝜎, 𝑃
(0)
1 ] = 0,

from which we find 𝑃
(0)
1 = I, namely, 𝑃1 → I as

𝜍 ∈ D+ → ∞.
To formulate a Riemann–Hilbert problem for the

coupled FL system (2), we will manage to find the an-
alytic counterpart of 𝑃1 in D−. The so-called adjoint
scattering equation of (6a) takes the form

𝐾𝑥 = 𝑖𝜍2[𝜎,𝐾]−𝐾𝑈1. (13)

Here we write the inverse matrices of 𝐽± as a collection
of rows,

𝐽−1
± =

⎛⎝ [𝐽−1
± ]1

[𝐽−1
± ]2

[𝐽−1
± ]3

⎞⎠ . (14)
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It can be seen that 𝐽−1
± fulfill Eq. (13) and obey the

boundary conditions 𝐽−1
± → I as 𝑥 → ±∞. From

Eq. (10), it follows

𝐸−1𝐽−1
− = 𝑅(𝜍) · 𝐸−1𝐽−1

+ , (15)

where 𝑅(𝜍) = (𝑟𝑘𝑗)3×3 = 𝑆−1(𝜍). The matrix func-
tion 𝑃2, which is analytic in D−, can be defined as

𝑃2(𝑥, 𝜍) =

⎛⎝ [𝐽−1
− ]1

[𝐽−1
+ ]2

[𝐽−1
+ ]3

⎞⎠ (𝑥, 𝜍). (16)

Similar to 𝑃1, we can also obtain the very large-𝜍
asymptotic behavior 𝑃2 → I as 𝜍 ∈ D− → ∞. More-
over, it can be shown that 𝑟11 accepts an analytic
extension to D− and 𝑟𝑘𝑗 (𝑘, 𝑗 = 2, 3) extend to D+

analytically.
Insertion of Eq. (7) into Eq. (10) gives

([𝐽−]1, [𝐽−]2, [𝐽−]3)

= ([𝐽+]1, [𝐽+]2, [𝐽+]3)

·

⎛⎝ 𝑠11 𝑠12𝑒
−2𝑖𝜍2𝑥 𝑠13𝑒

−2𝑖𝜍2𝑥

𝑠21𝑒
2𝑖𝜍2𝑥 𝑠22 𝑠23

𝑠31𝑒
2𝑖𝜍2𝑥 𝑠32 𝑠33

⎞⎠ ,

from which the expression of [𝐽−]1 reads

[𝐽−]1 = 𝑠11[𝐽+]1 + 𝑠21𝑒
2𝑖𝜍2𝑥[𝐽+]2 + 𝑠31𝑒

2𝑖𝜍2𝑥[𝐽+]3.

Thus 𝑃1 is of the form

𝑃1 = ([𝐽−]1, [𝐽+]2, [𝐽+]3) = 𝐽+

⎛⎝ 𝑠11 0 0
𝑠21𝑒

2𝑖𝜍2𝑥 1 0
𝑠31𝑒

2𝑖𝜍2𝑥 0 1

⎞⎠ .

On the other hand, putting Eq. (14) into Eq. (15),
we derive⎛⎝ [𝐽−1

− ]1

[𝐽−1
− ]2

[𝐽−1
− ]3

⎞⎠ =

⎛⎝ 𝑟11 𝑟12𝑒
−2𝑖𝜍2𝑥 𝑟13𝑒

−2𝑖𝜍2𝑥

𝑟21𝑒
2𝑖𝜍2𝑥 𝑟22 𝑟23

𝑟31𝑒
2𝑖𝜍2𝑥 𝑟32 𝑟33

⎞⎠
·

⎛⎝ [𝐽−1
+ ]1

[𝐽−1
+ ]2

[𝐽−1
+ ]3

⎞⎠ ,

from which we can express [𝐽−1
− ]1 as

[𝐽−1
− ]1 = 𝑟11[𝐽

−1
+ ]1 + 𝑟12𝑒

−2𝑖𝜍2𝑥[𝐽−1
+ ]2

+ 𝑟13𝑒
−2𝑖𝜍2𝑥[𝐽−1

+ ]3.

Consequently, 𝑃2 takes the form

𝑃2 =

⎛⎝ [𝐽−1
− ]1

[𝐽−1
+ ]2

[𝐽−1
+ ]3

⎞⎠
=

⎛⎝ 𝑟11 𝑟12𝑒
−2𝑖𝜍2𝑥 𝑟13𝑒

−2𝑖𝜍2𝑥

0 1 0
0 0 1

⎞⎠ 𝐽−1
+ .

By now, we have found two matrix functions 𝑃1

and 𝑃2, which are analytic in D+ and D−, respectively.
What follows is a description of the Riemann–Hilbert
problem for the coupled FL system (2). By denoting
that the limit of 𝑃1 is 𝑃+ when 𝜍 ∈ D+ approaches
R ∪ 𝑖R and the limit of 𝑃2 is 𝑃− when 𝜍 ∈ D− ap-
proaches R∪ 𝑖R, the Riemann–Hilbert problem we are
looking for can be set up as follows:

𝑃−(𝑥, 𝜍)𝑃+(𝑥, 𝜍)

=

⎛⎝ 1 𝑟12𝑒
−2𝑖𝜍2𝑥 𝑟13𝑒

−2𝑖𝜍2𝑥

𝑠21𝑒
2𝑖𝜍2𝑥 1 0

𝑠31𝑒
2𝑖𝜍2𝑥 0 1

⎞⎠ , (17)

under canonical normalization conditions

𝑃1(𝑥, 𝜍) → I, 𝜍 ∈ D+ → ∞,

𝑃2(𝑥, 𝜍) → I, 𝜍 ∈ D− → ∞,

and 𝑟11𝑠11 + 𝑟12𝑠21 + 𝑟13𝑠31 = 1.
What we set out to carry out now is to solve the

Riemann–Hilbert problem (17) that is assumed to be
irregular. The irregularity indicates that both det𝑃1

and det𝑃2 have certain zeros in their analytic do-
mains. Resorting to the definitions of 𝑃1 and 𝑃2 as
well as the scattering relation (10) yields

det𝑃1(𝜍) = 𝑠11(𝜍), 𝜍 ∈ D+,

det𝑃2(𝜍) = 𝑟11(𝜍), 𝜍 ∈ D−,

which enable us to know that the zeros of det𝑃1 and
det𝑃2 are the same as 𝑠11 and 𝑟11, respectively.

Based on the above facts, it is necessary to ana-
lyze the characteristics of the zeros. With regard to
the potential matrix 𝑄, there exists the symmetry re-
lation 𝑄† = −𝜎𝑄𝜎, where the superscript † stands for
the Hermitian of a matrix, and 𝜎 = diag(−1, 1, 1). It
will be convenient for our analysis to rewrite Eqs. (11)
and (16) as

𝑃1 = 𝐽−𝐻1 + 𝐽+𝐻2, (18a)
𝑃2 =𝐻1𝐽

−1
− +𝐻2𝐽

−1
+ , (18b)

where 𝐻1 = diag(1, 0, 0) and 𝐻2 = diag(0, 1, 1). In
view of 𝐽†

± = 𝜎𝐽−1
± 𝜎, it can be seen from Eq. (18)

that
𝑃 †
1 = 𝜎𝑃2𝜎, (19)

and the involution property of the scattering matrix
𝑆†(𝜍*) = 𝜎𝑆−1(𝜍)𝜎, which further gives

𝑠*11(𝜍
*) = 𝑟11(𝜍), 𝜍 ∈ D−. (20)

This illustrates that each zero ±𝜍𝑘 of 𝑠11 results in
each zero ±𝜍*𝑘 of 𝑟11 correspondingly.

Additionally, the potential matrix 𝑄 meets the re-
lation 𝑄 = −𝜎𝑄𝜎, based on which we can conclude
𝐽±(𝜍) = 𝜎𝐽±(−𝜍)𝜎 and

𝑃1(𝜍) = 𝜎𝑃1(−𝜍)𝜎. (21)
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Also we have 𝑆(𝜍) = 𝜎𝑆(−𝜍)𝜎, which leads to 𝑠11(𝜍) =
𝑠11(−𝜍) for 𝜍 ∈ D+, namely 𝑠11(±𝜍𝑘) = 0. At this
point, we posit that det𝑃1 has 2𝑁 simple zeros {𝜍𝑗}
(1 ≤ 𝑗 ≤ 2𝑁) in D+, where

𝜍𝑁+𝑙 = −𝜍𝑙, 1 ≤ 𝑙 ≤ 𝑁, (22)

and det𝑃2 has 2𝑁 simple zeros {𝜍𝑗} (1 ≤ 𝑗 ≤ 2𝑁) in
D−, where

𝜍𝑙 = 𝜍*𝑙 , 1 ≤ 𝑙 ≤ 2𝑁. (23)

Actually, the scattering data needed to solve the
Riemann–Hilbert problem (17) include the continu-
ous scattering data {𝑠21, 𝑠31} as well as the discrete
scattering data {𝜍𝑗 , 𝜍𝑗 , 𝜈𝑗 , 𝜈𝑗}, in which 𝜈𝑗 and 𝜈𝑗 are
nonzero column vectors and row vectors, respectively,
meeting

𝑃1(𝜍𝑗)𝜈𝑗 =0, (24a)
𝜈𝑗𝑃2(𝜍𝑗) = 0. (24b)

Performing the Hermitian of Eq. (24a) and taking into
account the involution properties of Eqs. (19) and (23),
we can reveal the relation

𝜈𝑗 = 𝜈†
𝑗𝜎, 1 ≤ 𝑗 ≤ 2𝑁.

According to Eqs. (21), (22) and (24a), we have

𝜈𝑗 = 𝜎𝜈𝑗−𝑁 , 𝑁 + 1 ≤ 𝑗 ≤ 2𝑁.

For the purpose of obtaining the explicit form of
the vectors 𝜈𝑗 , we calculate the derivatives of Eq. (24a)
with respect to 𝑥 and 𝑡 and find

𝜕𝜈𝑗
𝜕𝑥

= 𝑖𝜍2𝑗 𝜎𝜈𝑗 ,

𝜕𝜈𝑗
𝜕𝑡

=2𝑖𝜅2𝜎𝜈𝑗 .

Thus the vectors 𝜈𝑗 and 𝜈𝑗 are derived as

𝜈𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑒
[𝑖𝜍2𝑗 𝑥+2𝑖(𝜍𝑗− 1

2𝜍𝑗
)2𝑡]𝜎

𝜈𝑗,0, 1 ≤ 𝑗 ≤ 𝑁,

𝜎𝑒
[𝑖𝜍2𝑗−𝑁𝑥+2𝑖(𝜍𝑗−𝑁− 1

2𝜍𝑗−𝑁
)2𝑡]𝜎

𝜈𝑗−𝑁,0,

𝑁 + 1 ≤ 𝑗 ≤ 2𝑁,

and

𝜈𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝜈†
𝑗,0𝑒

[𝑖𝜍2𝑗 𝑥+2𝑖(𝜍𝑗− 1
2𝜍𝑗

)2𝑡]
*
𝜎
𝜎, 1 ≤ 𝑗 ≤ 𝑁,

𝜈†
𝑗−𝑁,0𝑒

[𝑖𝜍2𝑗−𝑁𝑥+2𝑖(𝜍𝑗−𝑁− 1
2𝜍𝑗−𝑁

)2𝑡]
*
𝜎
,

𝑁 + 1 ≤ 𝑗 ≤ 2𝑁,

where 𝜈𝑗,0 are the complex constant vectors.
It is pointed out that the Riemann–Hilbert prob-

lem (17) examined corresponds to the reflectionless
case, namely, 𝑠21 = 𝑠31 = 0. By introducing a
2𝑁 × 2𝑁 matrix 𝑀 with entries

𝑚𝑘𝑗 =
𝜈𝑘𝜈𝑗
𝜍𝑗 − 𝜍𝑘

, 1 ≤ 𝑘, 𝑗 ≤ 2𝑁,

and assuming that the inverse matrix of𝑀 exists, then
the solution for the Riemann–Hilbert problem (17) can
be given by

𝑃1(𝜍) = I−
2𝑁∑︁
𝑘=1

2𝑁∑︁
𝑗=1

𝜈𝑘𝜈𝑗(𝑀
−1)𝑘𝑗

𝜍 − 𝜍𝑗
,

(25a)

𝑃2(𝜍) = I+
2𝑁∑︁
𝑘=1

2𝑁∑︁
𝑗=1

𝜈𝑘𝜈𝑗(𝑀
−1)𝑘𝑗

𝜍 − 𝜍𝑘
.

(25b)

Furthermore, from Eq. (25a) we directly obtain

𝑃
(1)
1 = −

2𝑁∑︁
𝑘=1

2𝑁∑︁
𝑗=1

𝜈𝑘𝜈𝑗(𝑀
−1)𝑘𝑗 .

Next we are ready to construct the potential func-
tions 𝑞 and 𝑟 with the aid of the scattering data. Sub-
stituting the asymptotic expansion

𝑃1(𝜍) = I+
𝑃

(1)
1

𝜍
+
𝑃

(2)
1

𝜍2
+𝑂

(︁ 1

𝜍3

)︁
, 𝜍 → ∞,

into Eq. (6a) gives

𝑄 = − 𝑖[𝜎, 𝑃
(1)
1 ]

=

⎛⎜⎝ 0 2𝑖(𝑃
(1)
1 )12 2𝑖(𝑃

(1)
1 )13

−2𝑖(𝑃
(1)
1 )21 0 0

−2𝑖(𝑃
(1)
1 )31 0 0

⎞⎟⎠ ,

where (𝑃
(1)
1 )𝑘𝑗 denote the (𝑘, 𝑗)-entry of matrix 𝑃 (1)

1 .
As a result, the expression of general 𝑁 -soliton solu-
tions for the coupled FL system (2) reads

𝑞(𝑥, 𝑡) = 2𝑖

∫︁ ∞

𝑥

[︁ 𝑁∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝛼𝑘𝛽
*
𝑗 𝑒

−𝜉𝑘+𝜉*𝑗 (𝑀−1)𝑘𝑗

+

𝑁∑︁
𝑘=1

2𝑁∑︁
𝑗=𝑁+1

𝛼𝑘𝛽
*
𝑗−𝑁𝑒

−𝜉𝑘+𝜉*𝑗−𝑁 (𝑀−1)𝑘𝑗

−
2𝑁∑︁

𝑘=𝑁+1

𝑁∑︁
𝑗=1

𝛼𝑘−𝑁𝛽
*
𝑗 𝑒

−𝜉𝑘−𝑁+𝜉*𝑗 (𝑀−1)𝑘𝑗

−
2𝑁∑︁

𝑘=𝑁+1

2𝑁∑︁
𝑗=𝑁+1

𝛼𝑘−𝑁𝛽
*
𝑗−𝑁𝑒

−𝜉𝑘−𝑁+𝜉*𝑗−𝑁

· (𝑀−1)𝑘𝑗

]︁
𝑑𝑥̃,
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𝑟(𝑥, 𝑡) = 2𝑖

∫︁ ∞

𝑥

[︁ 𝑁∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝛼𝑘𝛾
*
𝑗 𝑒

−𝜉𝑘+𝜉*𝑗 (𝑀−1)𝑘𝑗

+

𝑁∑︁
𝑘=1

2𝑁∑︁
𝑗=𝑁+1

𝛼𝑘𝛾
*
𝑗−𝑁𝑒

−𝜉𝑘+𝜉*𝑗−𝑁 (𝑀−1)𝑘𝑗

−
2𝑁∑︁

𝑘=𝑁+1

𝑁∑︁
𝑗=1

𝛼𝑘−𝑁𝛾
*
𝑗 𝑒

−𝜉𝑘−𝑁+𝜉*𝑗 (𝑀−1)𝑘𝑗

−
2𝑁∑︁

𝑘=𝑁+1

2𝑁∑︁
𝑗=𝑁+1

𝛼𝑘−𝑁𝛾
*
𝑗−𝑁𝑒

−𝜉𝑘−𝑁+𝜉*𝑗−𝑁

· (𝑀−1)𝑘𝑗

]︁
𝑑𝑥̃,

with

𝑚𝑘𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(𝛽*
𝑘𝛽𝑗 + 𝛾*𝑘𝛾𝑗)𝑒

𝜉*𝑘+𝜉𝑗

−𝛼*
𝑘𝛼𝑗𝑒

−𝜉*𝑘−𝜉𝑗 ]/[𝜍𝑗 − 𝜍*𝑘 ],

1 ≤ 𝑘, 𝑗 ≤ 𝑁,

[(𝛽*
𝑘𝛽𝑗−𝑁 + 𝛾*𝑘𝛾𝑗−𝑁 )𝑒𝜉

*
𝑘+𝜉𝑗−𝑁

+𝛼*
𝑘𝛼𝑗−𝑁𝑒

−𝜉*𝑘−𝜉𝑗−𝑁 ]/[−𝜍𝑗−𝑁 − 𝜍*𝑘 ],

1 ≤ 𝑘 ≤ 𝑁,𝑁 + 1 ≤ 𝑗 ≤ 2𝑁,

[(𝛽*
𝑘−𝑁𝛽𝑗 + 𝛾*𝑘−𝑁𝛾𝑗)𝑒

𝜉*𝑘−𝑁+𝜉𝑗

+𝛼*
𝑘−𝑁𝛼𝑗𝑒

−𝜉*𝑘−𝑁−𝜉𝑗 ]/[𝜍𝑗 + 𝜍*𝑘−𝑁 ],

𝑁 + 1 ≤ 𝑘 ≤ 2𝑁, 1 ≤ 𝑗 ≤ 𝑁,

[(𝛽*
𝑘−𝑁𝛽𝑗−𝑁 + 𝛾*𝑘−𝑁𝛾𝑗−𝑁 )𝑒𝜉

*
𝑘−𝑁+𝜉𝑗−𝑁

−𝛼*
𝑘−𝑁𝛼𝑗−𝑁𝑒

−𝜉*𝑘−𝑁−𝜉𝑗−𝑁 ]/[−𝜍𝑗−𝑁

+𝜍*𝑘−𝑁 ], 𝑁 + 1 ≤ 𝑘, 𝑗 ≤ 2𝑁,

where we have chosen nonzero vectors 𝜈𝑘,0 =
(𝛼𝑘, 𝛽𝑘, 𝛾𝑘)

T, and 𝜉𝑘 = 𝑖𝜍2𝑘𝑥+ 2𝑖(𝜍𝑘 − 1
2𝜍𝑘

)2𝑡.
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