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We propose four different models of three-terminal quantum dot thermoelectric devices. From general thermo-
dynamic laws, we examine the reversible efficiencies of the four different models. Based on the master equation,
the expressions for the efficiency and power output are derived and the corresponding working regions are deter-
mined. Moreover, we particularly analyze the performance of a three-terminal hybrid quantum dot refrigerator.
The performance characteristic curves and the optimal performance parameters are obtained. Finally, we discuss
the influence of the nonradiative effects on the optimal performance parameters in detail.
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Recently, various three-terminal thermoelectric de-
vices and processes have been proposed, where the
electrons interchange energy with a boson or Fermi
reservoir, e.g., photons, phonons, electron–hole exci-
tations, electrons or magnons. The boson or Fermi
reservoir coupled to the electron system represents
the third terminal, making the setup a three-terminal
one.[1−19] Compared with two-terminal thermoelectric
devices, three-terminal thermoelectric ones can sepa-
rate electric and heat currents. In this study, we pro-
pose four different models of the three-terminal quan-
tum dot thermoelectric devices and define various effi-
ciencies (or, equivalently, coefficients of performance).
As an example, we analyze the thermodynamic per-
formance characteristics and optimal performance of
a three-terminal quantum dot hybrid thermoelectric
refrigerator. The influence of the nonradiative effect
on the optimal performance parameters is discussed
in detail.

The three-terminal quantum dot thermoelectric
device we consider is illustrated in Fig. 1. The two
coupled single-level quantum dots with energy levels
𝜀L and 𝜀R (𝜀L < 𝜀R) are connected with the two elec-
tronic terminals at different temperatures 𝑇L and 𝑇R,
respectively. The single energy level 𝜀L (𝜀R) is near
the Fermi level of the left (right) electronic terminal,
and we define the energy level difference 𝜀g = 𝜀R−𝜀L.
The left (right) quantum dot with energy level 𝜀L (𝜀R)
can only exchange electrons with the left (right) ter-
minal, respectively. The left and right terminals are
connected by an external circuit (an applied bias volt-
age ∆𝑉 = (𝜇R−𝜇L)/𝑞 or a load, where 𝑞 is the charge
of an electron). We suppose that the Coulomb inter-
actions prevent two electrons from being present at
the same time. Thus the single energy level 𝜀L (𝜀R)
can be occupied only by zero or one electron with re-
spective probabilities 𝑝𝑖 with 𝑖 ∈ {0,L,R}. The left
(right) quantum dot is coupled by two possible mech-
anisms. The first is due to the incoming photon (ther-
mal terminal with temperature kept at 𝑇T) radiation
at the resonant energy of 𝜀g = ℎ𝜈. The second is due
to nonradiative processes at the same resonant tran-
sition. The relationship between the temperatures of
the three terminals satisfies 𝑇L < 𝑇R < 𝑇T. Driven by

thermal photons, electrons can be transmitted from
the left terminal to the right terminal via the left and
right quantum dots and come back to the left terminal
through an external circuit, forming a net circulation
of electrons. Such a three-terminal quantum dot ther-
moelectric device can be designed to operate in four
different scenarios (models), as shown in Figs. 1(a)–
1(d).
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Fig. 1. The schematic diagram of three-terminal quan-
tum dot thermoelectric devices in four different scenarios.
The dark arrows show the different allowed electron tran-
sitions. Transitions between the left and the right energy
levels induced by thermal photons, and nonradiative pro-
cesses are indicated by an upper curly red arrow and a
lower curly blue arrow, respectively. The overall electron
current through the device is shown by the hollow arrow
with 𝐽 . The left and right electronic terminals are con-
nected by a load or bias voltage.

The operating principle of various scenarios is de-
scribed as follows: (a) Three-terminal hybrid thermo-
electric refrigerator: it is a ‘double driving’ refriger-
ator model. The ‘double driving’ comprises the heat
�̇�T from the thermal terminal and the electric power
−𝑃E supplied by the applied bias voltage, taking heat
�̇�L from the left terminal and dumping heat −�̇�R into
the right terminal. Thus �̇�L is the cooling power, and
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the COP of the refrigerator is defined as

𝜂(a) =

{︃
�̇�L/(−𝑃E), ∆𝑉 ̸= 0,

�̇�L/�̇�T, ∆𝑉 = 0.
(1)

For a reversible process, the entropy production rate
is

�̇� = − �̇�T

𝑇T
− �̇�L

𝑇L
− �̇�R

𝑇R
= 0. (2)

Combining the energy conservation formula

�̇�L + �̇�T + �̇�R − 𝑃E = 0, (3)

the corresponding reversible COP is obtained as fol-
lows:

𝜂rev(a) =
�̇�L/�̇�T

1 − 𝑇R/𝑇T − (�̇�L/�̇�T)(𝑇R/𝑇L − 1)
. (4)

When the applied bias voltage is zero, the reversible
COP is (1 − 𝑇R

𝑇T
) 𝑇L

𝑇R−𝑇L
.[18]

(b) Three-terminal hybrid thermoelectric heat en-
gine: it absorbs the invested heat �̇�T from the thermal
terminal and the heat �̇�L from the left terminal, re-
leases heat −�̇�R to the right terminal, and produces
the electric power 𝑃E. The efficiency is defined as[19]

𝜂(b) =
𝑃E

�̇�L + �̇�T

. (5)

For a reversible process, using Eqs. (2), (3) and (5),
we obtain the reversible efficiency

𝜂rev(b) =
(︁

1 − 𝑇R

𝑇T

)︁
− 𝑇R

𝑇T

𝑇T/𝑇L − 1

1 + �̇�T/�̇�L

. (6)

In particular, when �̇�L = 0, the reversible efficiency
is reduced to

𝜂rev(b) = 1 − 𝑇R

𝑇T
, (7)

which is the Carnot efficiency of the two-terminal case.
(c) General three-terminal thermoelectric heat en-

gine: it absorbs heat �̇�T from the thermal terminal,
releases heat −�̇�L to the left electronic terminal and
heat −�̇�R to the right electronic terminal, and pro-
duces the electric power 𝑃E. The efficiency is defined
as[19]

𝜂(c) = 𝑃E/�̇�T. (8)

For a reversible process, using Eqs. (2), (3) and (8) we
can obtain the corresponding reversible efficiency

𝜂rev(c) =
(︁

1 − 𝑇R

𝑇T

)︁
+

�̇�L

�̇�T

(︁
1 − 𝑇R

𝑇L

)︁
=
(︁

1 − 𝑇L

𝑇T

)︁
+

�̇�R

�̇�T

(︁
1 − 𝑇L

𝑇R

)︁
. (9)

It is obvious that �̇�L/�̇�T 6 0 and �̇�R/�̇�T 6 0, thus
we have

1 − 𝑇R

𝑇T
6 𝜂rev(c) 6 1 − 𝑇L

𝑇T
. (10)

Notice that, when �̇�L = 0 or �̇�R = 0, the three-
terminal model degenerates to a two-terminal one,
and the corresponding Carnot efficiencies 1 − 𝑇R/𝑇T

and 1 − 𝑇L/𝑇T are obtained. In particular, when
𝑇L = 𝑇R = 𝑇 , this model is similar to the ‘solar
cell’,[14] and the reversible efficiency is the Carnot
value 𝜂rev(c) = 1 − 𝑇/𝑇T like a two-terminal one.

(d) Another kind of general three-terminal thermo-
electric heat engine: it absorbs the invested heat �̇�T

from the thermal terminal and the heat �̇�R from the
right terminal, releases heat −�̇�L to the left terminal,
and produces the electric power 𝑃E. The efficiency is
defined as

𝜂(d) = 𝑃E/(�̇�T + �̇�R). (11)

For the reversible process, using Eqs. (2), (3) and (11),
similarly we obtain the reversible efficiency[19]

𝜂rev(d) =
(︁

1 − 𝑇L

𝑇T

)︁
− 𝑇L

𝑇T

𝑇T/𝑇R − 1

1 + �̇�T/�̇�R

. (12)

In this case, �̇�T/�̇�R is bounded in [0,+∞), in the lim-
its �̇�T/�̇�R = 0 (�̇�T = 0) and �̇�T/�̇�R → ∞ (�̇�R = 0),
Eq. (12) is bounded in

1 − 𝑇L

𝑇R
6 𝜂rev(d) 6 1 − 𝑇L

𝑇T
. (13)

We also find that the lower bound and the upper
bound of 𝜂rev(d) are the Carnot efficiencies for the two-
terminal ones. In particular, when 𝑇R = 𝑇T = 𝑇 , the
reversible efficiency is also the Carnot value 𝜂rev(d) =

1 − 𝑇L/𝑇T.
The dynamics of the left and right quantum dots

is described using the master equation formulation for
driven open systems. The evolution of the probabili-
ties 𝑝0, 𝑝L, and 𝑝R to find no electron or one electron in
energy level 𝜀L or 𝜀R, respectively, with time is given
by[14][︃

�̇�0
�̇�L
�̇�R

]︃
=

[︃−𝑘0L − 𝑘0R 𝑘L0 𝑘R0

𝑘0L −𝑘L0 − 𝑘LR 𝑘RL

𝑘0R 𝑘LR −𝑘R0 − 𝑘RL

]︃

·

[︃
𝑝0
𝑝L
𝑝R

]︃
. (14)

At the steady state, i.e., �̇�0 = �̇�L = �̇�R = 0, and the
probabilities meet 𝑝0 + 𝑝L + 𝑝R = 1. The occupation
probabilities of each state are derived as

𝑝0 =
𝑘L0𝑘R0 + 𝑘LR𝑘R0 + 𝑘L0𝑘RL

Ω
, (15a)

𝑝L =
𝑘0L𝑘R0 + 𝑘0L𝑘RL + 𝑘0R𝑘RL

Ω
, (15b)

𝑝R =
𝑘L0𝑘0R + 𝑘LR𝑘0L + 𝑘LR𝑘0R

Ω
, (15c)
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where Ω = 𝑘0R𝑘L0 + 𝑘0L𝑘LR + 𝑘0R𝑘LR + 𝑘0L𝑘R0 +
𝑘L0𝑘R0 + 𝑘LR𝑘R0 + 𝑘0L𝑘RL + 𝑘0R𝑘RL + 𝑘L0𝑘RL is the
normalization factor that ensures the sum of proba-
bilities to be equal to unity, 𝑘𝑖𝑗 (𝑖, 𝑗 = 0,L,R) is the
transition rate from state 𝑖 to state 𝑗. The rates de-
scribing the exchange of electrons with the electronic
terminals are given by

𝑘0L =ΓL𝑓(𝑥L), (16a)
𝑘L0 =ΓL[1 − 𝑓(𝑥L)], (16b)
𝑘0R =ΓR𝑓(𝑥R), (16c)
𝑘R0 =ΓR[1 − 𝑓(𝑥R)], (16d)

where 𝑓(𝑥) = 1/[exp(𝑥) + 1] is the Fermi distribution,
𝑥L = (𝜀L − 𝜇L)/𝑘𝐵𝑇L and 𝑥R = (𝜀R − 𝜇R)/𝑘B𝑇R are
the scaled energies, 𝑘B is the Boltzmann constant, ΓL

and ΓR are the bare tunneling rates between energy
level 𝜀𝑖 (𝑖 = L,R) and the corresponding electronic
terminal. The rates describing the transitions between
energy levels due to photons from the thermal termi-
nal (T) and to nonradiative (nr) effects are given by

𝑘LR =ΓT𝑛(𝑥T) + Γnr𝑛(𝑥gL), (17a)
𝑘RL =ΓT[1 + 𝑛(𝑥T)] + Γnr[1 + 𝑛(𝑥gR)], (17b)

where 𝑛(𝑥) = 1/[exp(𝑥) − 1] is the Bose–Einstein
distribution with the scaled energy 𝑥T = 𝜀g/𝑘B𝑇T,
𝑥gL = 𝜀g/𝑘B𝑇L and 𝑥gR = 𝜀g/𝑘B𝑇R, ΓT is the pro-
portional constant of the photon radiative processes,
and Γnr is the proportional constant of the nonradia-
tive processes. Notice that Γnr indicates the strength
of nonradiative effect.

At the steady state, the electron current entering
the left quantum dot from the left terminal is equal to
the electron current from right quantum dot to right
terminal. It can be written as

𝐽 = 𝑘0L𝑝0 − 𝑘L0𝑝L = 𝑘R0𝑝R − 𝑘0R𝑝0. (18)

This current can be decomposed as 𝐽 = 𝐽T+𝐽nr, with
𝐽T and 𝐽nr being the contributions to the current due
to the interaction with the thermal photons and the
nonradiative processes, respectively,

𝐽T =ΓT𝑛(𝑥T)𝑝L − ΓT[1 + 𝑛(𝑥T)]𝑝R, (19)
𝐽nr =Γnr𝑛(𝑥gL)𝑝L − Γnr[1 + 𝑛(𝑥gR)]𝑝R. (20)

The motion of the electrons between the electronic ter-
minals and the system gives rise to an associated heat
exchange. According to the fundamental equation of
thermodynamics for an open system at constant vol-
ume and pressure, we can obtain the associated heat
current flowing from the electronic terminals at the
steady state, which are given by

�̇�L = 𝐽(𝜀L − 𝜇L), (21)

�̇�R = − 𝐽(𝜀R − 𝜇R). (22)

The net heat current coming from the thermal photon
terminal is

�̇�T = 𝐽T𝜀g, (23)

whereas the heat current due to the nonradiative pro-
cesses is

�̇�nr = 𝐽nr𝜀g. (24)

The electric output power is expressed as

𝑃E = 𝐽(𝜇R − 𝜇L). (25)

We can verify that �̇�L+�̇�R+�̇�T+�̇�nr−𝑃E = 0. This
energy conservation formula is suitable for the above
four different models. Thus we can rewrite the ex-
pressions for the efficiency or the COP of each model
as

𝜂(a) =

⎧⎨⎩
�̇�L

−𝑃E
= 𝜀L−𝜇L

𝜇L−𝜇R
, ∆V ̸= 0,

�̇�L

�̇�T
= 𝐽(𝜀L−𝜇L)

𝐽T𝜀g
, ∆V = 0,

(26a)

𝜂(b) =
𝑃E

�̇�L + �̇�T

=
𝐽(𝜇R − 𝜇L)

𝐽(𝜀L − 𝜇L) + 𝐽T𝜀g
, (26b)

𝜂(c) =
𝑃E

�̇�T

=
𝐽(𝜇R − 𝜇L)

𝐽T𝜀g
, (26c)

𝜂(d) =
𝑃E

�̇�T + �̇�R

=
𝐽(𝜇R − 𝜇L)

𝐽T𝜀g − 𝐽(𝜀R − 𝜇R)
. (26d)

It is found from Eqs. (21)–(26) that the performance
parameters of the device (e.g., electric output power,
efficiency or COP) are the functions of the positions
of energy level 𝜀L and 𝜀R of two quantum dots, the
temperatures 𝑇L, 𝑇R and 𝑇T, the chemical potentials
𝜇L and 𝜇R of two electronic terminals, the bias volt-
age ∆𝑉 , the strength of nonradiative effect Γnr, and
the bare tunneling rates ΓL, ΓR and ΓT.

Since the three-terminal quantum dot thermoelec-
tric device can operate in four different models, one
may obtain the corresponding working regions by de-
ciding the signs of the four thermodynamic parameters
�̇�L, �̇�R, �̇�T and 𝑃E. In model (a): �̇�T > 0, �̇�L > 0,
�̇�R < 0, and 𝑃E < 0; in model (b): �̇�T > 0, �̇�L > 0,
�̇�R < 0, and 𝑃E > 0; in model (c): �̇�T > 0, �̇�L < 0,
�̇�R < 0, and 𝑃E > 0; and in model (d): �̇�T > 0,
�̇�L < 0, �̇�R > 0, and 𝑃E > 0.

When the nonradiative effect Γnr is not taken into
account, we have 𝐽T = 𝐽 and �̇�nr = 0. The overall
entropy production rate is given by

�̇� = −𝐽
(︁𝜀L − 𝜇L

𝑇L
− 𝜀R − 𝜇R

𝑇R
+

𝜀g
𝑇T

)︁
. (27)

According to the principle of entropy increase, i.e.,
�̇� > 0, we find 𝐽 > 0 corresponding to the region

𝑥

𝑇L
− 𝑦

𝑇R
+

𝜀g
𝑇T

6 0, (28)

where 𝑥 ≡ 𝜀L − 𝜇L and 𝑦 ≡ 𝜀R − 𝜇R are the relative
positions of the two energy levels in relation to the
chemical potential of left (right) electronic terminal.
Thus the difference of chemical potential is

𝜇L − 𝜇R = 𝑦 − 𝑥− 𝜀g. (29)

The inequality (28) and Eq. (29) play an impor-
tant role in deciding the signs of �̇�L, �̇�R, �̇�T and 𝑃E.
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Interestingly, when the inequality (28) takes the equal
sign, i.e., �̇� = 0, associating with Eqs. (15)–(18), we
verify that 𝐽 = 0. This means that the electrons can
reversibly transfer between the two electronic termi-
nals and the quantum dots. We also derive the re-
lationship between efficiency and entropy production
rate

𝜂(a) =
𝛼

1 − 𝑇R/𝑇T − 𝛼(𝑇R/𝑇L − 1) − 𝑇R�̇�/�̇�T

, (30a)

𝜂(b) = 1 − 𝑇R

𝑇T
− 𝑇R

𝑇T

𝑇T/𝑇L − 1

1 + �̇�T/�̇�L

− 𝑇R�̇�

�̇�L + �̇�T

, (30b)

𝜂(c) = 1 − 𝑇R

𝑇T
+

�̇�L

�̇�T

(︁
1 − 𝑇R

𝑇L

)︁
− 𝑇R�̇�

�̇�T

= 1 − 𝑇L

𝑇T
+

(︁
1 − 𝑇L

𝑇R

)︁ �̇�R

�̇�T

− 𝑇L�̇�

�̇�T

, (30c)

𝜂(d) = 1 − 𝑇L

𝑇T
− 𝑇L

𝑇T

𝑇T/𝑇R − 1

1 + �̇�T/�̇�R

− 𝑇L�̇�

�̇�R + �̇�T

. (30d)

According to Eqs. (21)–(23) and (25), we obtain the
corresponding working regions of the four different
models when Γnr = 0, as shown in Fig. 2. In the ana-
lytical calculation, it is set that 𝑇L = 4 K, 𝑇R = 8 K,
𝑇T = 16 K, 𝜀g/𝑘B = 6 K, Γnr = 0, and ΓT = ΓL =
ΓR = Γ . It is seen from Fig. 2 that by tuning the
relative positions of the two energy levels, the device
can operate in four different models at other related
parameters given.
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Fig. 2. The corresponding working regions of the four
different models.

For convenience and uniformity, we introduce the
total power output 𝑃 for each model, i.e.,

𝑃 =

{︂
�̇�L, model (a),

𝑃E, models (b), (c) and (d).
(31)

Using Eqs. (21)–(26) and (30), we plot the three-
dimensional (3D) projection graph of the total power
output 𝑃 and the efficiency 𝜂 varying with the rel-
ative positions of the two energy levels 𝑥 and 𝑦 at
different nonradiative effects Γnr, as shown in Figs. 3
and 4. It is seen that when the nonradiative effects
do not exist (Γnr = 0), the working regions will be in
good agreement with that in Fig. 2. When the non-
radiative effects exist, the working regions can only
be numerically calculated. As the nonradiative effects
increase, the corresponding working regions diminish

gradually. Some positive values in the working regions
can be decreased to zero or negative, and hence the
working regions diminish gradually as the nonradia-
tive effects increase. Since the corresponding working
regions for models (b) and (c) are finite, we can infer
that these two regions will vanish at some values of
Γnr. Both the total output power 𝑃 and the efficiency
(or COP) 𝜂 decrease as the nonradiative effects Γnr in-
crease. When the nonradiative effects do not exist, the
efficiency 𝜂 monotonously varies with 𝑥 or 𝑦 when the
other of them are given, and the maximum efficiency
𝜂max should lie on the line for 𝐽 = 0 since the device
can reversibly operate in this case. Particularly in re-
gion (a), i.e., the device works as a ‘double driving’ re-
frigerator, the contour for 𝜇L−𝜇R (white dashed line)
becomes longer as its value increases. This means that
as the applied bias voltage ∆𝑉 increases, the working
region will increase, and more cooling power �̇�L (𝑃 )
can be obtained. These are the advantages of the dou-
ble driving refrigerator.
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Using Eqs. (22)–(27a), we plot the performance
characteristic curves of the cooling rate �̇�L versus
COP 𝜂 at different nonradiative effects Γnr and ap-
plied bias voltage when the device works as a ‘double
driving’ refrigerator, as shown in Fig. 5. It can be seen
from Fig. 5 that, when the applied bias voltage is zero,
the performance characteristic curve for Γnr = 0.1Γ
is a closed loop-shaped one, while these curves are
open-shaped when Γnr = 0 or the applied bias voltage
is nonzero. The performance characteristic curves for
∆𝑉 > 0 present a special point: the maximum cool-
ing rate point (𝜂QL, �̇�L). As the nonradiative effects
Γnr increase, both the maximum cooling power �̇�𝐿max

and the corresponding COP 𝜂QL decrease. The opti-
mal thermodynamic performance parameters at the
maximum cooling rate can be numerically calculated.
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Fig. 5. The performance characteristic curves of the cool-
ing power versus the coefficient of performance at different
nonradiative effects Γnr and applied bias voltages.
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Fig. 6. The curves of the maximum cooling rate and the
corresponding COP versus the nonradiative effects Γnr at
given −𝑞Δ𝑉/𝑘B = 4K and versus the applied bias voltage
Δ𝑉 when the nonradiative effects do not exist.

Using Eqs. (22) and (27a) and the extremal condi-
tions

𝜕�̇�L

𝜕𝑥
= 0, (32)

we can numerically calculate the maximum cooling
rate �̇�𝐿max and the corresponding COP 𝜂QL. The
curves of the two optimal performance parameters ver-
sus the nonradiative effects Γnr or the applied bias
voltage ∆𝑉 are plotted in Fig. 6. It can be seen that
both the maximum cooling rate �̇�𝐿max and the cor-
responding COP 𝜂QL monotonously decrease as the
nonradiative effects Γnr increase. Thus in the actual
maximum cooling rate design one should minimize the
nonradiative effects Γnr as largely as possible. As the
applied bias voltage ∆𝑉 increases, the maximum cool-
ing rate �̇�𝐿max increases monotonously while the cor-
responding COP 𝜂QL monotonously decreases.

The main results obtained are as follows: (1) as
the nonradiative effects Γnr increase, the correspond-
ing working regions diminish gradually and both the
total output power and the efficiency also decrease.
(2) For a hybrid thermoelectric refrigerator, as the
applied bias voltage increases, the working region will
increase, more cooling power can be obtained. (3)
The optimal performance of the hybrid thermoelec-
tric refrigerator is analyzed and the influence of the
nonradiative effect Γnr and applied bias voltage ∆𝑉
on the optimal performance parameters is revealed.
The results obtained here can provide some theoreti-
cal guidelines for the design and operation of practical
quantum dot thermoelectric devices.
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