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Strong Interaction Effect on Jet Energy Loss with Detailed Balance ∗
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The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with
detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter
𝑞. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong
interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy.
The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification
factor 𝑅AA and the parameter of 𝑞 at intermediate jet energy.
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It is known from statistical quantum chromody-
namics (QCD) that strongly interacting matter under-
goes a deconfinement transition to a new state, quark-
gluon plasma (QGP). One of the main probes of QGP
is jets (energetic partons). Gluon radiation induced
by multiple scattering of the energetic partons prop-
agating in a dense medium[1] leads to jet quenching.
As discovered in high-energy heavy-ion collisions at
RHIC, jet quenching is manifested in both the sup-
pression of single inclusive hadron spectrum at high
transverse momentum 𝑝T region[2,3] and the disap-
pearance of the typical back-to-back jet structure in
dihadron correlations.[4] Extensive theoretical investi-
gation of jet quenching has been widely carried out in
recent years.[5−11] Most of them were focused on the
radiative jet energy loss;[12] gluon absorption is not
considered at high transverse momentum. However,
for the intermediate jet energy region, it was shown
that the gluon absorption plays an important role.[13]
The gluon distribution considered here is the distribu-
tion of ideal gluon gas. However, quark-gluon plasma
is strongly coupled. The strong interaction will induce
the gluon distribution to a more complicated case. In
this Letter, we report a study on mean occupation
number distribution of gluons with strong interaction
and analyze the interaction effect on radiative and ab-
sorptive jet energy loss.

If the potential energy behaves like 𝑉 (𝑟) = −𝐴/𝑟𝛼,
𝛼 < 3, the interactions will exhibit singularities at
the origin in Boltzmann–Gibbs (B-G) statistics.[14]
The value of 𝛼 in the interaction potential (the Cor-
nell potential) among gluons in quark-gluon plasma
is less than three. This made B-G statistics an ineffi-
cient theory to describe gluons in QGP. Non-extensive
statistics is a statistical theory which aims at solving
this problem. Recent developments in astrophysical
scenarios,[15] heavy ion collisions[16] and so on show
a quantitative agreement between experimental data
and theoretical models based on non-extensive statis-
tics. In non-extensive statistics, the parameter 𝑞 de-
scribes the non-extensiveness of the system. In the

limit of 𝑞 → 1, non-extensive statistics comes to B-G
statistics. Thus the entropic index 𝑞 in 𝑆𝑞 can be re-
garded as the physical effect on a standard B-G system
which causes the system’s non-extensiveness and non-
additive entropy. In this work, we study the strong
interaction effect on the gluons by analyzing the non-
extensive parameter’s departure from unit and deter-
mine the mean occupation number distribution of glu-
ons with strong interaction. Then we analyze its in-
fluence on the radiative and absorptive jet energy loss
and compare our result with that under ideal gluon
gas distribution.

The singularity for 𝑉 (𝑟) = −𝐴/𝑟𝛼, 𝛼 < 3
shows non-extensiveness of the energy with interac-
tions among particles.[14] Non-extensive statistics is
a statistical theory which aims at describing non-
extensiveness. It is applied in many fields, such as
astrophysical self-gravitating systems,[15] heavy ion
collisions,[16] anomalous diffusion.[17] It is helpful for
achieving a better understanding of the phenomenon.

Non-extensive statistical mechanics is based on the
generalized functional form of the entropy (in natural
unit with 𝑘 = ~ = 1)

𝑆𝑞 =
1 −

∑︀𝑊
𝑖=1 𝑝

𝑞
𝑖

𝑞 − 1
(

𝑊∑︁
𝑖=1

𝑝𝑖 = 1; 𝑞 ∈ 𝑅), (1)

where 𝑊 is the total number of microstates, and
the parameter 𝑞 describes the non-extensiveness of
the system. The B-G entropy can be obtained from
Eq. (1) in the limit of 𝑞 → 1.

It can be straightforwardly verified that for sys-
tems 𝐴1 and 𝐴2 if the joint probability satisfies
𝑝𝐴1+𝐴2
𝑖𝑗 = 𝑝𝐴1

𝑖 𝑝𝐴2
𝑗 ,

𝑆𝑞(𝐴1 + 𝐴2) =𝑆𝑞(𝐴1) + 𝑆𝑞(𝐴2)

+ (1 − 𝑞)𝑆𝑞(𝐴1)𝑆𝑞(𝐴2). (2)

This shows the non-extensiveness of the entropy.
In non-extensive statistical mechanics, the mean
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value of a variable is

⟨𝑥⟩𝑞 ≡
∫︁ ∞

0

𝑑𝑥𝑥𝑃 (𝑥), (3)

where 𝑃 (𝑥) is the escort distribution, which is defined
as an arbitrary, possibly fractal, probability distribu-
tion. In thermostatistics of multifractals, the proba-
bility distribution 𝑝(𝑥) is sought on the basis of in-
complete knowledge, an occurrent event will induce a
set of further probability distribution[18]

𝑃 (𝑥) ≡ [𝑝(𝑥)]𝑞∫︀∞
0

𝑑𝑥′[𝑝(𝑥′)]𝑞
. (4)

We can verify that 𝑃 (𝑥) is normalized,
∫︀∞
0

𝑑𝑥𝑃 (𝑥) =
1.

If the system is in equilibrium, with the principle
of maximum entropy, then Fermi–Dirac and Bose–
Einstein (escort) mean occupation number distribu-
tions could be generalizable as follows:[19]

𝑛̄𝑖 =
1

[1 + (𝑞 − 1)𝛽(𝜖𝑖 − 𝜇)]
𝑞

𝑞−1 ± 1
. (5)

This distribution is not always a positive real num-
ber. To guarantee the real and positive character of
the mean occupation number distribution, it is neces-
sary to introduce a cut-off prescription, and 𝑛̄𝑖 is set
to zero for the negative case of the distribution.[20]

In the previous work,[13] detailed balance effect of
jet energy loss is considered under distribution of ideal
gluon gas. However, the gluons are strongly coupled.
The gluon distribution with strong force interaction
needs to be reconsidered.

The theory of jet energy loss was developed un-
der a class of multiple scattering diagrams. The
average separation between the scattering centers is
specified by the mean free path 𝜆. The jet energy
loss is controlled by the opacity-number of scatterings
𝑛̄ = 𝑁𝜎el/𝐴⊥ = 𝐿/𝜆, where 𝑁 , 𝐿 and 𝐴⊥ are, respec-
tively, the number, the thickness, and the transverse
area of the targets. Thus we will focus on gluon ab-
sorption during each scattering.

In the area of each scattering with a size of mean
free path 𝜆, the number of gluons in this area can be
estimated by

𝑁 =
𝑑𝑁g

𝑑𝑦
·
(︁ 𝜆

𝐷

)︁2

≈ 8, (6)

where 𝑑𝑁g/𝑑𝑦 is the expected rapidity density of the
gluons, which is approximately 1000 at RHIC ener-
gies at

√
𝑠 ≈ 200 AGeV for 𝐴 = 208,[21] and 𝐷 is the

transverse size of quark-gluon plasma, approximately
11 fm.[22] The mean free path is

𝜆−1
g = ⟨𝜎qg𝜌g⟩ + ⟨𝜎gg𝜌g⟩ ≈

2𝜋𝛼2
s

𝜇2
9 × 7𝜁(3)

𝑇 3

𝜋2
, (7)

where 𝜇 is the Debye screening mass with 𝜇2 =
4𝜋𝛼s𝑇

2 from the perturbative QCD at finite

temperature.[23] The temperature of quark-gluon
plasma is set to be 250 MeV at RHIC, then 𝜆g = 1 fm.

We consider these gluons to compose a gluon sys-
tem. Since the diameter of this system, i.e., the mean
free path 𝜆, is much larger than 1/𝜇, we ignore the in-
teractions with other areas in other scatterings, then
the possibility of this system is

𝑃 =
exp(−𝛽𝐸)

𝑍
, (8)

where 𝑍 is the corresponding partition function 𝑍 =∫︀
exp(−𝛽𝐸)𝑑3𝑁𝑝𝑑3𝑁𝑟/(2𝜋)3𝑁 .

Here 𝐸 is the energy of the gluon system

𝐸 =

𝑁∑︁
𝑖=1

𝑝2𝑖
2𝜇

+

𝐶2
𝑁∑︁

𝑗=1

𝑉𝑗(𝑟), (9)

with 𝑉𝑗(𝑟) being the interaction potential between glu-
ons. The interaction potential can be parameterized
as[24]

𝑉 (𝑟) = 𝐶𝜎𝑟 − 3𝛼s

𝑟
−𝐷, (10)

in terms of the string tension 𝜎 and a 1/𝑟 contribution
containing both transverse string and the Coulombic
effects. Here 𝜎 = 0.19 GeV2 is the fundamental quark–
antiquark flux tube energy, 𝐶 = 9/4 indicates the scal-
ing of the energy density, 𝛼s is the strong coupling
constant, and 𝛼s = 0.09. The constant 𝐷 is used to
fit the height of potential. We set the zero potential
energy at the distance of the Debye length 1/𝜇, then
we obtain 𝐷 = 0.855 GeV. Since the plasma is strongly
coupled, we concentrate on the strong coupling form
and ignore the Coulombic term to avoid the infrared
divergence.

The probability of the gluon system can also be
considered as the joint probability of the gluons com-
posing this system. Then

𝑃 =
exp(−𝛽𝐸)

𝑍
= (𝑃𝑞)𝑁 , (11)

where 𝑃𝑞 is the possibility of each gluon.
If the gluon is free, its probability can be written

as
𝑃𝜖 =

exp(−𝛽𝜖)

𝑍1
, (12)

where 𝜖 = 𝑝2/2𝜇, 𝑍1 is the corresponding partition
function 𝑍1 =

∫︀ ∫︀
exp(−𝛽𝜖)𝑑3𝑝𝑑3𝑟/(2𝜋)3.

However, gluons are not free, they are strongly
coupled. This will induce the probability changing
into

𝑃𝑞 =
(𝑃𝜖)

𝑞∑︀
(𝑃𝜖)𝑞

=
𝑒−𝛽𝑞𝜖

𝑉
ℎ3 ( 2𝑚𝜋

𝛽𝑞 )
3
2

, (13)

according to the non-extensive statistical theory in
Eq. (4).

We simulate the energy of the system Eq. (9) at the
static case, substitute Eq. (13) into Eq. (11), and solve
this probability equation. We can then obtain the av-
erage 𝑞 and find that it changes with the gluon number
𝑁 as shown in Fig. 1. With increasing the gluon num-
ber, the interaction on each gluon is stronger, thus the
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value of 𝑞 departs more from unit. Based on the eval-
uation of the gluon number in Eq. (6), the value of 𝑞
is 0.4 for QGP at RHIC.
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Fig. 1. The value of the non-extensive parameter 𝑞 as a
function of gluon number 𝑁 .

With the value of 𝑞 = 0.4, the mean occupation
number distribution of the strongly coupled gluons 𝑛𝑖

at the RHIC temperature 𝑇 = 250 MeV is obtained,
as shown in Fig. 2. It shows that with the strong force
interaction, more gluons will stay at low-energy state,
while fewer will jump to high-energy state if compared
with the free gluon case.
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Fig. 2. The mean occupation number distribution of
strongly coupled gluons 𝑛𝑖 as a function of gluon energy
𝜀g at temperature 𝑇 = 250MeV.

Jet energy loss with thermal absorption is found
to be important at intermediate jet energy. The ther-
mal absorption originates from gluons in quark-gluon
plasma, whose distribution is influenced by the inter-
action among them. Here we will study the strong
interaction effect on the jet energy loss with detailed
balance and analyze the effect on the nuclear modifi-
cation factor 𝑅AA.

The quark-gluon plasma medium is assumed in
thermal equilibrium shortly after the production of
the jet. Taking into account both stimulated emission
and thermal absorption in a thermal medium with fi-
nite temperature 𝑇 , one has the probability of gluon
radiation with energy 𝜔,[13]

𝑑𝑃 (0)

𝑑𝜔
=

𝛼s𝐶F

2𝜋

∫︁
𝑑𝑧

𝑧

∫︁
𝑑𝑘2

⊥
𝑘2
⊥

{︁
𝑁(𝑧𝐸)𝛿(𝜔 + 𝑧𝐸)

+ [1 + 𝑁(𝑧𝐸)]𝛿(𝜔 − 𝑧𝐸)𝜃(1 − 𝑧)𝑃
(︁ 𝜔

𝐸

)︁}︁
,

(14)

where 𝑘 = (𝜔,𝑘) is the four-momentum of the radi-
ated gluon, 𝑧 = 𝜔/𝐸, 𝐶F is the Casimir of the quark
jet in the fundamental representation, and the split-
ting function 𝑃gq(𝑧) ≡ 𝑃 (𝑧)/𝑧 = [1 + (1 − 𝑧)2]/𝑧 for
𝑞 → 𝑔𝑞. The first term is obtained from thermal ab-
sorption and the second term from gluon emission with
the Bose–Einstein enhancement factor. Here the ther-
mal gluon distribution with strong interaction is

𝑁(|𝑘|) =
1

[1 + (𝑞 − 1)(|𝑘|/𝑇 )]
𝑞

𝑞−1 − 1
, (15)

according to Eq. (5) in non-extensive statistics.
To define the effective parton energy loss, we con-

sider only gluon radiation outside a cone with |𝑘⊥| >
𝜇, where 𝜇 is the Debye screening mass in the finite
temperature. Assuming the scale of the hard scatter-
ing as 𝑄2 = 4𝐸2, then the kinematic limits of the
gluon’s transverse momentum will be 𝜇2 ≤ 𝑘2

⊥max ≤
4|𝜔|(𝐸 − 𝜔).[13]

Subtracting the gluon radiation spectrum in the
vacuum, one then obtains the energy loss due to final-
state absorption and stimulated emission

∆𝐸
(0)
abs =

∫︁
𝑑𝜔𝜔

(︁𝑑𝑃 (0)

𝑑𝜔
− 𝑑𝑃 (0)

𝑑𝜔
|𝑇=0

)︁
=

𝛼s𝐶F

2𝜋
𝐸

∫︁
𝑑𝑧

∫︁
𝑑𝑘2

⊥
𝑘2
⊥

[−𝑃 (−𝑧)𝑁(𝑧𝐸)

+ 𝑃 (𝑧)𝑁(𝑧𝐸)𝜃(1 − 𝑧)]. (16)

Even though the stimulated emission cancels part of
the contribution from absorption, the net medium
effect without rescattering is still dominated by the
final-state thermal absorption, resulting in a net en-
ergy gain as shown in Fig. 3(b).
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Fig. 3. Energy gain via absorption with (−Δ𝐸
(1)
abs) and

without (−Δ𝐸
(0)
abs) rescattering at different values of 𝑞 with

consideration of strong interaction among gluons.

During the propagation of the hard parton after
its production, it will suffer multiple scattering with
the medium. The multiple scattering can also induce
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gluon radiation. Here we will investigate the stimu-
lated emission and thermal absorption associated with
multiple scattering in a hot QCD medium with strong
interaction.

We also follow the framework of opacity expansion
developed by Gyulassy, Levai, and Vitev (GLV).[8] It
was shown by GLV that the higher order corrections
contribute slightly to the radiative energy loss. Thus
here we consider only contributions to the first order
in the opacity expansion.

Similarly to the case of final-state absorption, one
can also include stimulated emission and thermal ab-
sorption at the first order in opacity, the corresponding
energy loss can be expressed as

∆𝐸
(1)
abs =

∫︁
𝑑𝜔𝜔

(︁𝑑𝑃 (1)

𝑑𝜔
− 𝑑𝑃 (1)

𝑑𝜔
|𝑇=0

)︁
=

𝛼s𝐶F

𝜋

𝐿

𝜆g
𝐸

∫︁
𝑑𝑧

∫︁
𝑑𝑘2

⊥
𝑘2
⊥

∫︁
𝑑2𝑞⊥|𝑣(𝑞⊥)|2

· 𝑘⊥ · 𝑞⊥
(𝑘⊥ − 𝑞⊥)2

𝑁(𝑧𝐸)

× [−𝑃 (−𝑧)⟨Re(1 − 𝑒𝑖𝑤1𝑦10)⟩
+ 𝑃 (𝑧)⟨Re(1 − 𝑒𝑖𝑤1𝑦10)⟩𝜃(1 − 𝑧)], (17)

which mainly comes from thermal absorption with
partial cancelation by stimulated emission in the
medium.

Here

∆𝐸
(1)
rad =

𝛼s𝐶F

𝜋

𝐿

𝜆g
𝐸

∫︁
𝑑𝑧

∫︁
𝑑𝑘2

⊥
𝑘2
⊥

∫︁
𝑑2𝑞⊥|𝑣(𝑞⊥)|2

𝑘⊥ · 𝑞⊥
(𝑘⊥ − 𝑞⊥)2

𝑃 (𝑧)⟨Re(1 − 𝑒𝑖𝑤1𝑦10)⟩𝜃(1 − 𝑧).
(18)

The factor 1 − exp(𝑖𝜔1𝑦10) reflects the destructive in-
terference arising from the non-Abelian LPM effect,
and ⟨. . .⟩ =

∫︀
𝑑𝑦𝜌(𝑦) . . . is the longitudinal target pro-

file. The target distribution is assumed to be an expo-
nential form 𝜌(𝑦) = 2 exp(−2𝑦/𝐿)/𝐿, 𝜆g = 𝐶F𝜆/𝐶A

is the mean free path of the gluon, and |𝑣(𝑞⊥)|2 is the
normalized distribution of momentum transfer from
the scattering centers

|𝑣(𝑞⊥)|2 ≡ 1

𝜎el

𝑑2𝜎el

𝑑2𝑞⊥
=

1

𝜋

𝜇2
eff

(𝑞2
⊥ + 𝜇2)2

, (19)

1

𝜇2
eff

=
1

𝜇2
− 1

𝑞2⊥max + 𝜇2
, 𝑞2⊥max ≈ 3𝐸𝜇. (20)

Substituting the gluon number distribution func-
tion Eq. (15) at 𝑞 = 1, 0.4 into Eq. (17), the energy
gain can be obtained, as shown in Fig. 2. Figures 3(a)
and 3(b) show the energy gain via gluon absorption
with (−∆𝐸

(1)
abs) and without (−∆𝐸

(0)
abs) rescattering at

different values of 𝑞 = 1, 0.4 with considering strong
interaction among gluons. It is found that the energy
gain increases with the departure of 𝑞 from unit. This
is because more gluons stay at low-energy state with
the strong interaction. That will induce the increase
of the possibility of thermal absorption.
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Fig. 4. The ratio of effective parton energy loss with
(Δ𝐸 = Δ𝐸

(0)
abs + Δ𝐸

(1)
abs + Δ𝐸

(1)
rad) and without (Δ𝐸

(1)
rad)

absorption as a function of 𝐸/𝜇 at different values of 𝑞.

Figure 4 shows the ratios of the calculated radia-
tive energy loss with and without thermal absorption
as functions of 𝐸/𝜇 for 𝐿/𝜆g = 5 at different val-
ues of 𝑞 considering the strong interaction among glu-
ons. It is found that the thermal absorption reduces
the effective parton energy loss for intermediate val-
ues of parton energy. For 𝑞 = 1, which corresponds
to the free gluon case, the ratio is the same as that
in the previous work.[13] However, when considering
the strong interaction among gluons with the depar-
ture of 𝑞 from unit, the ratio is only 60% of that in
the free gluon case at intermediate jet energy. This is
because more gluons stay at low-energy state, and the
ratio increases with the gluon absorption. It indicates
the importance of the strong interaction effect on the
jet energy loss with detailed balance at intermediate
jet energy. The decrease of the ratio will increase the
nuclear modification factor 𝑅AA at the intermediate
jet energy. That will induce the change of parameter
of 𝑞. For partons with very high energy the effect of
the gluon absorption is small and can be ignored.

In summary, we have considered the effect of
strong interaction on the mean occupation number
distribution of gluons. Since this effect induces more
gluons to stay at low-energy state than the free gluon
case, it is important for jet energy loss with detailed
balance at intermediate jet energy. The energy gain
via absorption increases with considering the strong
interaction. The ratio of energy loss with and with-
out thermal absorption is only 60%, half of the free
gluon case. This will affect the nuclear modification
factor 𝑅AA and the parameter of 𝑞 at intermediate jet
energy.
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