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Recently, the concept of topological insulators has been generalized to topological semimetals, including three-
dimensional (3D) Weyl semimetals, 3D Dirac semimetals, and 3D node-line semimetals (NLSs). In particular,
several compounds (e.g., certain 3D graphene networks, Cu3PdN, Ca3P2) were discovered to be 3D NLSs, in which
the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D)
Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new
concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice)
composed by Kagome and honeycomb lattices. It is found that A3B2 (A is a group-IIB cation and B is a group-VA
anion) compounds (such as Hg3As2) with the HK lattice are 2D NLSs due to the band inversion between the
cation Hg-𝑠 orbital and the anion As-𝑝𝑧 orbital with respect to the mirror symmetry. Since the band inversion
occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors.
In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or
a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling
is small, Hg3As2 with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests
a new route to design topological materials without involving states with opposite parities.

PACS: 73.20.At, 71.55.Ak, 71.20.−b DOI: 10.1088/0256-307X/34/5/057302

Due to the unique band structure, topological in-
sulators (TIs) have drawn broad attention in recent
years.[1−4] They have a bulk energy gap between the
valence and conduction bands, which is similar to ordi-
nary insulators but contains a nontrivial gapless boun-
dary state that is inspired by their bulk topological
states. Similar to TIs, a new topological state of me-
tals has been proposed. In topological semimetals, the
valence and conduction bands cross near the Fermi
level to form band touch points and exhibit new to-
pological quantum states. Up to date, according to
the property of band touch points, three-dimensional
(3D) topological semimetals have been divided into
three kinds, i.e., Dirac semimetal (DSM) and Weyl
semimetal (WSM) that possesses discrete band touch
points, and node-line semimetal (NLS) in which the
band touch points form a closed ring in momentum
space. Wan et al. first proposed that pyrochlore iri-
dates (such as Y2Ir2O7) are magnetic WSMs in which
the time-reversal symmetry is broken.[5] Subsequently,
Xu et al. have proposed that ferromagnetic HgCr2Se4
possesses a single pair of Weyl fermions with oppo-
site chiralities separated in momentum space.[6] Spa-
tial inversion broken WSM state was also discovered
in nonmagnetic materials including TaAs, TaP, NbAs
and NbP.[2,7−11] When two opposite chiral Weyl fer-
mions meet, the DSM state with a four-fold degene-
rate Dirac node protected by both inversion and time-
reversal symmetries may appear. Na3Bi

[12,13] and

Cd3As2
[14−18] have been predicted theoretically and

verified experimentally to be 3D DSM semimetals.
In 2011, Burkov et al. proposed the concept of 3D

NLS with broken time-reversal symmetry and gave
an explicit model realization of 3D NLSs in a nor-
mal insulator-TI superlattice structure.[19] The 3D
NLS state was recently extended to the case of time-
reversal invariant systems.[20,21] Three-dimensional
carbon allotrope materials with a negligible SOC ef-
fect such as Mackay–Terrones crystals,[20] hyperho-
neycomb lattices,[22] and the interpenetrated grap-
hene network[23] were proposed to be time-reversal
invariant 3D NLSs. In addition, the cubic antipe-
rovskite materials Cu3PdN,

[24,25] Ca3P2,
[26,27] non-

centrosymmetric superconductors PbTaSe2
[28] and

TlTaSe2
[29] were also predicted to display such exo-

tic states. There are drumhead-like surface flat bands
on the surface of 3D NLSs. When SOC is taken into
account, each node-line ring may drive into a pair of
Dirac nodes or Weyl nodes.[24,25]

In contrast to the case of 3D topological semime-
tals for which a comprehensive understanding is now
achieved, the research field of 2D topological semi-
metals is still under development. When the SOC
effect is neglected, graphene can be seen as a 2D Di-
rac semimetal.[30] Young and Kane proposed the ex-
istence of three possible distinct 2D Dirac semimetal
phases by using a two-site tight binding model.[31] A
Lieb lattice with intra-unit-cell and suitable nearest-
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neighbor hopping terms between the spinless fermi-
ons was proposed to be a 2D Chern semimetal with
a single Dirac-like point.[32] Recently, Wang et al.
found a 2D NLS-like state in graphene on WS2 due
to the strong interface-induced spin-orbit interaction,
but they did not discuss the importance and the impli-
cation of the unique 2D NLS deeply.[33] Here we will
first propose a concept of the 2D NLS and discover
some corresponding materials.

In the present work, based on effective model ana-
lysis and first-principles calculations, we put forward
a new concept of the 2D NLS and show that this novel
state can be realized in a new composite lattice (here-
after referred to as the HK lattice) with interpenetra-
ting Kagome and honeycomb lattices. Furthermore,
first-principles calculations show that a series of com-
pounds (e.g, Hg3As2) with the HK lattice are indeed
2D NLSs in which the band inversion happens between
the Hg-𝑠 orbital and the As-𝑝𝑧 orbital. When consi-
dering SOC, a tiny band gap at the node-line ring can
be induced, resulting in a novel topological crystalline
insulator (TCI) without parity inversion.
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Fig. 1. The 2D node-line semimetal in the honeycomb-
Kagome lattice. (a)–(c) The geometrical structures of the
honeycomb, kagome, and honeycomb-Kagome (HK) lat-
tices, and (d)–(f) the 2D band structures of honeycomb,
Kagome, and HK lattices, respectively. (g)–(i) The corre-
sponding 3D band structures. The dashed lines show the
unit cell. The 𝑥-axis is along the direction of a lateral lat-
tice vector. There is a 𝑝𝑧 (𝑠) orbital on each honeycomb
(kagome) lattice point. The band structures are computed
with 𝐸𝑝 = −4.6, 𝑡𝑝 = 0.3 for the honeycomb lattice and
𝐸𝑠 = −1.8, 𝑡𝑠 = 0.6 for the kagome lattice. Here + and
− in (d)–(f) denote the eigenvalues of the electronic states
with respect to the 𝑥–𝑦 mirror plane.

It is well known that the band crossing in a 2D
system could happen at a special point in the 2D Bril-
louin zone. For example, the 𝜋 and 𝜋* bands in grap-
hene cross each other to form Dirac points at high
symmetry points 𝐾 and 𝐾 ′. Here we will address an
interesting question whether the touching points can
form a node-ring in a 2D system. For simplicity, we
consider the spinless case (without the SOC effect).
If two bands happen to cross each other at a 𝑘-point,

there are two possibilities: either these two bands be-
long to two different one-dimensional irreducible re-
presentations, or they together form the basis of a
two-dimensional irreducible representation. Among
the 𝑘-points of a node-ring in the 2D Brillouin zone,
some of them must be general 𝑘-points with the lowest
point group symmetry. In the 3D case, a general 𝑘-
point can only have the 𝐶1 point group symmetry. In
contrast, a general 𝑘-point in the 2D case could have
the 𝐶𝑠 point group symmetry if the 2D system has
an in-plane mirror (or glide mirror) symmetry. Since
the 𝐶𝑠 point group only has two one-dimensional ir-
reducible representations (𝐴′ and 𝐴′′), the two bands
in a 2D NLS must belong to 𝐴′ and 𝐴′′ representati-
ons, respectively. Therefore, to realize a 2D NLS, the
material should have an in-plane mirror (or glide mir-
ror) symmetry and the two bands near the Fermi level
should transform differently under the mirror symme-
try.

We find that the 2D NLS state may be present in
a composite lattice (i.e., HK lattice) with interpene-
trating Kagome and honeycomb lattices. Let us start
from the simple tight-binding model of a honeycomb
lattice. In Fig. 1(a), we show the top view of a planar
honeycomb lattice with the 𝐷6ℎ point group. There
are two sites per primitive cell and each site is associa-
ted with a 𝑝𝑧 orbital. For simplicity, we only consider
the nearest neighboring (NN) interaction. Similar to
the graphene case, we can obtain the eigenvalues of
two bands with

𝐸1,2 =𝐸𝑝 ± 𝑡𝑝[3 + 2 cos(2𝑘𝑥) + 2 cos(𝑘𝑥 +
√
3𝑘𝑦)

+ 2 cos(
√
3𝑘𝑦 − 𝑘𝑥)]

1/2,

where 𝐸𝑝 and 𝑡𝑝 are the on-site energies of the 𝑝𝑧
orbital and the hopping between NN 𝑝𝑧 orbitals, re-
spectively. It is well-known that there are Dirac points
(𝐾 and 𝐾 ′) in the band structure (see Fig. 1(d)).[30]

Another interesting observation from the expression of
the eigenvalues is that the upper (lower) anti-bonding
(bonding) band has the maximum (minimum) at Γ .
For the Kagome lattice (see Fig. 1(b)), there are three
sites in the primitive cell. Each site has one 𝑠 orbital
and only the NN interaction is taken into considera-
tion. The eigenvalues of the three bands are

𝐸1 =𝐸𝑠 − 2𝑡𝑠,

𝐸2,3 = ∓ 𝑡𝑠[3 + 2 cos(2𝑘𝑥) + 2 cos(𝑘𝑥 +
√
3𝑘𝑦)

+ 2 cos(
√
3𝑘𝑦 − 𝑘𝑥)]

1/2 + 𝑡𝑠 + 𝐸𝑠,

where 𝐸𝑠 and 𝑡𝑠 are the on-site energies of the 𝑠 or-
bital and the NN hopping parameter (negative for
the 𝑠 orbital), respectively. The topmost band (see
Fig. 1(e)) is flat, which is characteristic for the Ka-
gome lattice.[34,35] The other two lower bands have the
same dispersion as the honeycomb lattice. Thus the
bottom of the lowest-energy band locates at Γ . We
now combine the Kagome lattice with the honeycomb
lattice to form the HK lattice (see Fig. 1(c)). The HK
lattice has a spatial inversion symmetry with a 𝐷6ℎ

057302-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 34, No. 5 (2017) 057302 Express Letter

point group symmetry. Since the 𝑠 orbital and 𝑝𝑧 or-
bital are symmetric or anti-symmetric with respect to
the 𝑥–𝑦 mirror plane, there is no interaction between
𝑠 and 𝑝𝑧 orbitals. Thus the band structure of the HK
lattice will be simply the superimposition of the band
structures of the Kagome and honeycomb lattices. If
the bottommost band of the Kagome lattice has an
energy lower than the topmost band of the honeycomb
lattice at Γ , there will be band inversion between the
𝑠 and 𝑝𝑧 bands in the HK lattice (see Fig. 1(f)) and its
3D band structure can be seen in Figs. 1(g)–1(i). We
consider the case that two of the five bands are filled.
Note that these two states close to the Fermi level have
even parity, suggesting that the band inversion has a
different meaning from the usual band inversion that
happens between bands with opposite parities. Since
the 𝑠 band and 𝑝𝑧 band are even or odd with respect
to the 𝑥–𝑦 mirror plane, the band crossing points will
form a closed node-line ring. Thus the 2D NLS state
due to the presence of the mirror symmetry may be
realized in the HK lattice.

Y M

X

++ +

+++

+ + +

Y M

X

++ +

+-+

+ + +

Y M

X

++ +

---

+ + +

Y M

X

++ +

+++

+ + +

Y M

X

++ +

+-+

+ + +

Y M

X

++ +

---

+ + +

Γ Γ Γ

ΓΓΓ

(a) (b) (c)

Ν=0 Ν=1 Ν=2

Ν=4 Ν=3 Ν=2

Ζ2=1 Ζ2=−1 Ζ2=1

Ζ2=1 Ζ2=−1 Ζ2=1

Fig. 2. Schematic illustration of the representative cases
which prove 𝑍2 = 𝜉Γ 𝜉𝑋𝜉𝑌 𝜉𝑀 = (−1)𝑁 , where 𝑁 is the
number of node-rings, + and − denote the eigenvalues of
the electronic states with respect to the 𝑥–𝑦 mirror plane.

Since the 𝑍2 number
[24] based on the Berry phase

for the 3D NLS cannot be defined in the 2D case, we
propose to use the mirror eigenvalues to define the 𝑍2

number that characterizes the 2D node-line semime-
tal. This provides a way to characterize whether the
2D node-line semimetal has an even or odd number of
node-rings. In a 2D spinless system with the time
reversal symmetry, Γ [(0, 0)], 𝑋[(0.5, 0)], 𝑌 [(0, 0.5)]
and 𝑀 [(0.5, 0.5)] are the four time-reversal invariant
points. We assume that there is a lateral mirror plane
in this 2D system. Therefore, each state for any 𝑘-
point in the Brillouin zone can have a definite mir-
ror eigenvalue 𝜉 = +1 or −1. The 𝑍2 number that
characterizes the total number (𝑁) of node lines in a
2D system can be defined as 𝑍2 = 𝜉Γ 𝜉𝑋𝜉𝑌 𝜉𝑀 , where

𝜉𝑎 =
𝑁occ∏︀
𝑛=1

𝜉an (𝑁occ is the number of the occupied sta-

tes). One can easily prove that 𝑍2 = (−1)𝑁 . Firstly,
if there is a node line centered at 𝐾 that is not time-
reversal invariant, there must be another node line
centered at −𝐾. Therefore, we only need to consi-
der the case that the node lines are centered at time-

reversal invariant points. As shown in Fig. 2(a), when
all the mirror eigenvalues at the four time-reversal in-
variant points are +1, the number of node lines could
be 0 or 4. This is in agreement with the relations-
hip that 𝑍2 = 𝜉Γ 𝜉𝑋𝜉𝑌 𝜉𝑀 = (−1)𝑁 . In the other
two cases (Figs. 2(b) and 2(c)), it can be easily seen
that 𝑍2 = 𝜉Γ 𝜉𝑋𝜉𝑌 𝜉𝑀 = (−1)𝑁 is also satisfied. If we
reverse all the mirror eigenvalues, the same picture
will remain. Therefore, we have proved 𝑍2 = (−1)𝑁 ,
i.e., the number of the node-ring is even (odd) when
𝑍2 = 𝜉Γ 𝜉𝑋𝜉𝑌 𝜉𝑀 is +1 (−1). In the case of planar
Hg3As2, 𝑁 = 1 and 𝑍2 = −1.

In the following we will design 2D NLS materi-
als based on the HK A3B2 lattice. To obtain a 2D
NLS state in an HK lattice, the valence band and con-
duction band should be contributed by 𝑝𝑧 and 𝑠 states,
respectively. In usual compounds, the occupied 𝑝 state
and empty 𝑠 state originates from the anion and ca-
tion, respectively. Therefore, the honeycomb B-sites
should be anions, while the Kagome A-sites should be
cations. Since the −6 valence state of an anion is rare,
the valence states of A-cation and B-anion of a stable
A3B2 compound should be +2 and −3, respectively.
After extensive tests, we find that if the A-cation is a
group-IIB element (e.g., Zn, Cd and Hg) and B-anion
is a group VA element (e.g., N, P, As, Sb and Bi), the
A3B2 compound may be a 2D NLS. With first princi-
ple calculations, we obtain the relaxed structures and
find that the 2D NLS state can be present in five A3B2

compounds (i.e., Zn3Bi2, Cd3Bi2, Hg3As2, Hg3Sb2
and Hg3Bi2). In addition, although planar Cd3As2
with the relaxed structure is a normal semiconductor,
it becomes a 2D NLS when 1% tensile strain is app-
lied. As can be seen from the band structures of these
compounds (see Fig. S1 in the supplemental materi-
als), there are two bands crossing each other near Γ
at the Fermi level. The fat band representation clearly
shows that the conduction band is contributed by the
𝑠 orbital of the cation and the valence band is contri-
buted by the 𝑝𝑧 orbital of the anion. It is found that
the degree of the band inversion increases when cation
and anion become heavier. For example, the inversed
energies of the Hg system are 0.841, 0.982 and 1.127 eV
for Hg3As2, Hg3Sb2 and Hg3Bi2, respectively. This is
because the 𝑠 level decreases with the atomic number
of the cation element, while the 𝑝 level increases with
the atomic number of the anion element. Since the lo-
cal density approximation usually underestimates the
band gap (see Fig. 3(a)), we adopt a more reliable hy-
brid functional HSE06 to confirm that Hg3As2 is still
a 2D NLS (see Fig. S2). Interestingly, we find that
the optical absorption of HK Hg3As2 below 2 eV is
very weak (see Fig. S3). This is because both VBM
and CBM states have even parity, thus the direct op-
tical transition between them is forbidden. Due to
the linear band dispersion near the node-line ring, the
conductivity in HK Hg3As2 is expected to be rather
high. This suggests that 2D NLS can be a promising
candidate for transparent conductors in touch screens
and solar cells.[36,37]

So far, the effect of SOC is neglected. After inclu-
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ding the SOC in the density functional calculations, a
small band gap will be opened around the node-line
ring. We can understand this from the symmetry ana-
lysis. One only needs to check whether the gap will
be opened along the two high-symmetry lines starting
from Γ (i.e., Γ → 𝐾 and Γ → 𝑀). For the 𝑘-points
on the two lines (except for the end points), the sym-
metry group is the double group of 𝐶2𝑣. Since the dou-
ble group of 𝐶2𝑣 only has a 2D irreducible representa-
tion Γ5, both the CBM and VBM states must belong
to the same irreducible representation Γ5 and they
could interact with each other, resulting in a band
gap opening. For Hg3As2, the band gap is 34meV (see
Fig. 3(b)), and the SOC-induced band gaps are 65.9,
80.1, 24.8 and 100.2meV for Zn3Bi2, Cd3Bi2, Hg3Sb2
and Hg3Bi2, respectively. This value is smaller than
the SOC-induced gap opening (about 62meV) in a 3D
NLS system Cu3NPd.

24 Note that the SOC-induced
band gap opening can be tuned by changing the ele-
ments. For example, the SOC-induced band gap in
Cd3As2 with 1% tensile strain is only 0.2meV. Since
the SOC-induced band gap opening in HK A3B2 com-
pounds is small, we can still regard them as 2D NLSs
at room temperature, similar to the 3D NLS case.
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Fig. 3. Band structures of planar Hg3As2 with the HK
lattice. (a, b) The 2D band structures calculated by LDA
and LDA+SOC, respectively. (c, d) The corresponding 3D
band structures from the 𝑘 · 𝑝 theory. In (c), 𝐶0 = −1,
𝐶1 = 1, 𝑀0 = −1 and 𝑀1 = 1 are employed. In addition
to these parameters, a large value (0.5) for 𝐴0 is adopted
in (d) for clarity.

To gain more insight into the origin of the 2D NLS
and SOC-induced gap opening in A3B2 compounds,
we construct the effective 𝑘 · 𝑝 Hamiltonian with the
invariant method.[39] To be more specific, we consider
Hg3As2 as a typical example. According to the LDA
calculation (without SOC), the VBM and CBM states
at Γ are mainly contributed by Hg |𝑠⟩ and As |𝑝𝑧⟩ or-
bitals, respectively. The VBM state is a bonding state
between the three Hg 𝑠 orbitals, while the CBM state

is an anti-bonding state between the As 𝑝𝑧 orbitals,

|𝑆+⟩ = 1√
3
(|Hg1, 𝑠⟩+ |Hg2, 𝑠⟩+ |Hg3, 𝑠⟩),

|𝑃+
𝑧 ⟩ = 1√

2
(|As1, 𝑝𝑧⟩ − |As2, 𝑝𝑧⟩),

where the + sign indicates that both states have even
parity. The irreducible representations of |𝑆+⟩ and
|𝑃+

𝑧 ⟩ are Γ+
1 and Γ+

3 of 𝐷6ℎ, respectively. We will use
|𝑆+⟩ and |𝑃+

𝑧 ⟩ as the bases to construct a low-energy
effective Hamiltonian around the Γ point. The ef-
fective Hamiltonian obtained from the invariant met-
hod reads

𝐻(𝑘) =

[︂
𝜀(𝑘) +𝑀(𝑘) 0

0 𝜀(𝑘)−𝑀(𝑘)

]︂
,

where 𝜀(𝑘) = 𝐶0 + 𝐶1(𝑘
2
𝑥 + 𝑘2𝑦) and 𝑀(𝑘) = 𝑀0 +

𝑀1(𝑘
2
𝑥 + 𝑘2𝑦). It is clear that these two states are

decoupled with the eigenvalues 𝐸(𝑘) = 𝐶0 ± 𝑀0 +
(𝐶1±𝑀1)(𝑘

2
𝑥+𝑘2𝑦). It can be seen that if 𝑀0𝑀1 > 0,

the system is a normal insulator. Otherwise, a band
inversion takes place. In this case, the two bands
will cross each other at the 𝑘-points which satisfy
𝑘2𝑥 + 𝑘2𝑦 = −𝑀0/𝑀1. This means that the cros-
sing points form a node-line ring (see Fig. 3(c)), in
agreement with the first-principles result. Our 𝑘 · 𝑝
analysis shows that the SOC-induced gap opening is
due to the quadratic term of 𝑘 instead of the linear
term (see part 2 of the supplemental materials).

We find that the insulating state of Hg3As2 with
the HK lattice induced by the SOC is a 2D TCI
state.[38,40] Qualitatively, this can be understood by
examining the band structure without considering
SOC. From the LDA band structure, band inversion
only takes place at the Γ point instead of on the other
three time-reversal points. Note that here the mea-
ning of ‘band inversion’ is different from that in the
field of topological insulators. In the latter case, the
band inversion usually means inversion between ei-
genstates with opposite parities, while in our context,
both eigenstates (𝑠 and 𝑝𝑧 states) have the same even
parity but opposite eigenvalues with respect to the 𝑥–𝑦
mirror plane. Since the band inversion relating to the
mirror symmetry occurs only once, it is expected that
the system will become a 2D TCI state after a band
gap is opened by SOC. Interestingly, the band inver-
sion mechanism in our case is different from the case
in monolayer IV–VI (e.g., PbSe) where the TCI beha-
vior is due to the band inversion with respect to both
spatial inversion and the 𝑥–𝑦 mirror plane at 𝑋 and
𝑌 points.[28,41,42] We support our above argument by
numerically computing the mirror Chern number with
a Slater–Koster TB model. We find that Hg3As2 has a
non-zero mirror Chern number of 2, suggesting that it
is a TCI after SOC is considered. We further confirm
this result by computing the edge states of the semi-
infinite Hg3As2 nanoribbons with both armchair and
zigzag terminations. The recursive method is adop-
ted to compute the surface local density of states.[43]
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Since the presence of the edges does not break the
mirror symmetry with respect to the 𝑥–𝑦 plane, it is
expected that there will exist nontrivial helical edge
states as a characteristic feature of TCI.[44,45] This is
indeed the case. As can be seen from Fig. 4 for the
armchair ribbon and the zigzag ribbon case, there are
two helical edge states within the bulk band gap for
different terminations. The number of the edge sta-
tes is in agreement with the calculated mirror Chern
number.
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Fig. 4. The edge states of armchair and zigzag ribbon
of Hg3As2 with the HK lattice. (a, c) The geometrical
structures. (b, d) Energy and momentum-dependent local
density of states of the semi-infinite armchair and zigzag
ribbons computed with the Green function method. The
SOC effect has been included.

Finally, we consider the effect of possible buckling
on the electronic structure of the A3B2 compounds
with the HK lattice. It is found that the gap induced
by the buckling is too small so that HK Hg3As2 with
a small buckling can still be regarded as a 2D NLS
at room temperature (see part 3 of the supplemental
materials).

In summary, we have proposed for the first time
the concept of the 2D NLS. A newly constructed HK
lattice is predicted to display the 2D NLS behavior due
to the band inversion with respect to the mirror sym-
metry. It is predicted that this 2D NLS state can be
realized in the real A3B2 (A is a group-IIB cation and
B is a group-VA anion) compound (such as Hg3As2)
with the HK lattice.

We thank Dr. Rui Yu and Dr. Hongming Weng
for our useful discussions.
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1. Computational details

DFT calculations. In our work, density functional theory (DFT) method is used for

structural relaxation and electronic structure calculation. The ion-electron interaction is 

treated by the projector augmented-wave[1] technique as implemented in the Vienna ab 

initio simulation package[2]. The exchange-correlation potential is treated by LDA.[3,4] 

For structural relaxation, all the atoms are allowed to relax until atomic forces are 

smaller than 0.01 eV/Å. The HSE06 functional[5] is adopted to compute the accurate 

band structure of planar HK Hg3As2. 

PSO Algorithm for Q2D Systems. With our newly developed global optimization 

PSO approach,[6,7] we search the lowest-energy structure of Hg3As2 with the thickness 

less than 0.8 Å. Our implementation has been described elsewhere.[6] In the PSO 

simulation[8] for the Hg3As2 system, we set the population size to 30 and the number of 

generations to 20. We consider four different initial thickness (0Å, 0.5 Å, 1.0 Å, 1.5 Å) 

for each system. In addition, we repeat twice of each calculation in order to make results 

reliable. 

Invariant method for deriving the effective Hamiltonian. The invariant method[9] 



is adopted to obtain the low-energy effective Hamiltonian of HK Hg3As2 near Γ. First, 

we analyze the symmetry of the VBM and CBM states of Hg3As2 to find out the 

corresponding irreducible representations. Then, we classify basis matrices and 

functions of the finite wave vector k according to the irreducible representations of the 

point-group of Hg3As2. The double-valued D6h point group is used when SOC is 

included. Finally, one construct the model Hamiltonian by combining the basis matrix 

and functions of k according to their symmetry properties. Through diagonalizing this 

Hamiltonian, one can get the eigenvalues of electronic states of Hg3As2. 

. 

2. Effect of spin-orbit coupling on the electronic structure of the planar HK lattice

from the k p  theory 

In the case of SOC, we have four basis functions, namely, 

, , ,z zS P S P        . ,S     and ,zP      belong to 2D 
7Γ   and 

8Γ

irreducible representations of double group of D6h, respectively. Here, besides the point 

group symmetry, time reversal symmetry is also taken into account to derive the 

effective Hamiltonian up to the third order of k around Γ: 

*

*

( ) ( ) 0 0 ( )

0 ( ) ( ) ( ) 0
( )

0 ( ) ( ) ( ) 0

( ) 0 0 ( ) ( )

k M k B k

k M k B k
H k

B k k M k

B k k M k









 
   
  
 

  , 

where  2 2
0( ) x y x yB k A i k k k k       (A0 characterizes the magnitude of the SOC

effect). It is interesting to see that the effective Hamiltonian does not contain the linear 

term and third order term of k because the basis functions have the same parity. This is 

different from the case of usual topological systems in which there are linear k terms.[9] 

Due to the presence of both time-reversal and inversion symmetry, there are two double 

degenerate bands with eigenvalues 2 2( ) ( ) ( ) | ( ) |E k k M k B k    . Interestingly, 

there is no four-fold degenerate point in the whole Brillouin zone since it is impossible 

to satisfy ( ) 0M k   and ( ) 0B k   simultaneously, i.e., a band gap will be opened at 



the node-line ring by the SOC effect (see Fig. 3d). The absence of the linear k terms in 

our Hamiltonian naturally explains the small band gaps induced by SOC. 

3. Effect of buckling on the electronic structure of the HK lattice

We now check the structural stability of the A3B2 compounds with the HK lattice. By

performing global structure optimization,[6] we find that the buckled Hg3As2 structure 

(as shown in Fig. S4a) with the HK lattice has the lowest energy among all structures 

with the thickness less than 0.8 Å. In the relaxed structure of buckled Hg3As2, Hg and 

As atoms locate at two planes with a distance of 0.732 Å. The computed phonon 

frequencies[10,11] (see Fig. S5) indicate that buckled HK Hg3As2 is dynamically stable. 

The LDA band structure shown in Fig. S4c indicates that buckled HK Hg3As2 is a 

semiconductor with a LDA direct gap of 1.629 eV. The conduction and valence bands 

are contributed by Hg-s orbital and As-pz orbitals, respectively. Therefore, buckled HK 

Hg3As2 is a normal insulator instead of a 2D NLS. 

It is found that the band gap of buckled HK Hg3As2 decreases quickly as the thickness 

goes thinner (see Fig. S4b). When the thickness is less than 0.3 Å, the gap closes. From 

the LDA band structure of HK Hg3As2 with a 0.3 Å buckling (see Fig. S4d), we find 

that the conduction and valence bands cross each other along six special paths of the 

momentum space, i.e.,  → K  and  → 'K , but a tiny gap (about 5 meV) is opened 

along other directions (e.g.,  → M ). To further understand this, we analyze the wave 

function symmetries along the   → K   and   → M  . Along the   → K  , the 

irreducible representations of CBM and VBM are 'A   and ''A   of the Cs group, 

respectively. While for the → M , they belong to the same irreducible representation 

'A  of the Cs group, resulting in a gap opening. This can be seen more clearly from the 

3D band structure shown in Fig. S6. Our result suggests that a small buckling will 

transform the 2D NLS state of the HK lattice into a 2D Dirac semi-metal state. 

An effective k p  Hamiltonian is derived to understand the effect of buckling on 

the electronic structure. In the buckled HK lattice, the cations and anions locate at two 

planes with different heights. Therefore, the xy-plane mirror symmetry in the planar HK 



lattice is broken, resulting in the C6v symmetry for the buckled HK lattice. Without 

considering the SOC effect, the effective Hamiltonian obtained from the invariant 

method is expressed as 

2 3
1 2

2 3
1 2

( ) ( ) ( )(3 )
( )

( )(3 ) ( ) ( )
y x y

y x y

k M k R iR k k k
H k

R iR k k k k M k





   
  

    
, 

where R1 and R2 (real) are new terms due to the presence of buckling. Note that the 

presence of third order terms of k results from the broken of the inversion symmetry. 

The expression of eigenvalues is 2 2 2 2 3 2
1 2( ) ( ) ( )(3 )y x yE k M k R R k k k     . From it, 

we can see the presence of Dirac points at K  and 'K , in agreement with our DFT 

calculations. A typical band structure of the buckled HK lattice is shown in Fig. S4d. 

This indicates that the node-line ring in the planar HK lattice is protected by the mirror 

symmetry. Therefore, we find an additional third-order term of k due to the buckling, 

which explains why the band gap is opened along  → M , but the gap is tiny. Since 

the band gap opening by the buckling is small, HK Hg3As2 with a small buckling can 

still be regarded as a 2D NLS at room temperature. 

We propose that the thickness of buckled HK Hg3As2 can be tuned by applying 

pressure on Hg3As2 sandwiched by two insulating BN monolayers. The pressure (about 

9 MPa) needed for turning the normal insulating state into the 2D NLS state can be 

easily achieved experimentally. The band structure of the three-layer system under an 

external pressure of 11 MPa is shown in Fig. S7. We can see that the 2D NLS remains 

intact despite of the presence of BN layers since the states near the Fermi level is mainly 

contributed by Hg-s and As-pz orbital. 

In addition, we find that the effect of insulating substrates on the electronic structure 

of planar HK Hg3As2 is negligible (see Fig. S8). It is clear that the presence of an 

insulating substrate has a negligible effect on the electronic structure of planar Hg3As2. 

The band gaps arising from the mirror symmetry breaking due to the substrate are 4 

meV and 4.4 meV for Al2O3 and BN substrates respectively. Therefore, planar Hg3As2 

on an insulating substrate can be still be regarded as a 2D node-line semimetal at room 

temperature. 



4. Other supplemental materials

Fig. S1. LDA band structures of planar A3B2 compounds with the HK lattice. The lateral 

lattice constants of all the materials are fully relaxed except for the case of Cd3As2 

which is under 1% tensile strain. 

Fig. S2. Band structure of planar Hg3As2 with the HK lattice from the HSE06 

calculation. 



Fig. S3. Imaginary part of the dielectric constant of planar Hg3As2 with the HK lattice 

from the LDA calculation. 

Fig. S4. Geometrical and electronic structures of buckled HK Hg3As2. (a) Top and side 

views of the structure of buckled Hg3As2. (b) Band gaps of buckled Hg3As2 as a function 

of thickness from the LDA calculations. (c) Band structure of the optimized structure 

of buckled Hg3As2. (d) Band structure of Hg3As2 with a thickness of 0.3 Å. Insets: top 

panel for the magnified view of the bands along the line →, bottom panel for the 

case of →. 



Fig. S5. Phonon dispersion of buckled Hg3As2 with the HK lattice. The absence of 

imaginary frequency indicates that the dynamic stability. 

Fig. S6. 3D band structure of HK Hg3As2 with a 0.3 Å buckling from the k p  theory. 

The inset shows the Dirac points at K   and 'K  . The SOC effect is ignored. 

0 1 0 1 1 20, 0, 1, 1, 0.5, 0.5C C M M R R         are used for computing the band 

structure. 



Fig. S7. Geometrical and electronic structures of Hg3As2 sandwiched by BN layers. (a) 

Top and side views of the structure of Hg3As2 sandwiched by BN layers. The lattice 

mismatch between Hg3As2 and BN is about 1%. (b) LDA band structure of Hg3As2 

sandwiched by BN layer. The states near the Fermi level are contributed by Hg s orbitals 

and As pz orbitals. At the Fermi level, the node-line ring can be seen (note that the band 

gap opening induced by the buckling is very small). (c) The required pressure applied 

to BN layers for obtaining the Hg3As2 layer with a given thickness. 

Fig. S8. Geometric and electronic band structures for planar Hg3As2 on (a) hexagonal 

Al2O3 [0001] surface and (b) hexagonal BN sheet. 
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