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Chaos Identification Based on Component Reordering and Visibility Graph *
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The identification between chaotic systems and stochastic processes is not easy since they have numerous simila-
rities. In this study, we propose a novel approach to distinguish between chaotic systems and stochastic processes
based on the component reordering procedure and the visibility graph algorithm. It is found that time series and
their reordered components will show diverse characteristics in the ‘visibility domain’. For chaotic series, there
are huge differences between the degree distribution obtained from the original series and that obtained from the
corresponding reordered component. For correlated stochastic series, there are only small differences between
the two degree distributions. For uncorrelated stochastic series, there are slight differences between them. Based
on this discovery, the well-known Kullback-Leible divergence is used to quantify the difference between the two
degree distributions and to distinguish between chaotic systems, correlated and uncorrelated stochastic processes.
Moreover, one chaotic map, three chaotic systems and three different stochastic processes are utilized to illustrate
the feasibility and effectiveness of the proposed method. Numerical results show that the proposed method is not
only effective to distinguish between chaotic systems, correlated and uncorrelated stochastic processes, but also

easy to operate.
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In recent years, the analysis of nonlinear time se-
ries is still an active research field.l' ! In this field, the
identification between chaotic systems and stochastic
processes is very fundamental and it is essential if one
intends to model the associated phenomenon and to
determine the relevant quantifiers.['! However, it is not
an easy task since chaotic systems and stochastic pro-
cesses share several properties, e.g., a wide-band po-
wer spectrum, a delta-like autocorrelation function,
and an irregular behavior of the measured signals.!”!
In fact, this similarity has made it possible to replace
stochastic processes by chaotic systems in many ap-
plications. In the last few decades, numerous met-
hods have been proposed to distinguish chaotic sys-
tems from stochastic processes.[* "]

Recently, the visibility graph (VG) method, which
was introduced by Lacasa et al,l'”) has attracted ex-
tensive attention.''~'* The VG technique is a sta-
tistical algorithm that maps a time series into a net-
work or graph according to a simple geometric cri-
teria. It has been shown that the VG not only in-
herits several properties of time series into its struc-
ture, but also captures the dynamical fingerprints of
the process of generating time series. Specifically,
periodic time series can be converted into regular
graphs, fractal time series can be mapped into scale-
free networks, and random series can be converted into
random graphs.l'’'] As a result, methods of complex
network theory can be exploited to characterize time
series.

Generally, given a time series {x;}¥ ; of length IV,
the associated VG contains N nodes (each point re-
presents a node), two arbitrary data values (i.e., two
nodes) (t;,x;) and (¢;, ;) will have connection in the
associated VG if every data value (¢;, ;) between them
(e, t; < t; < t;) fulfills the following geometric cri-
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teria

t; —t;
P (1)
J 1

It should be noted that the VG derived from any time
series is always connected, undirected and invariant
under affine transformations'”! (i.e., invariant under
rescaling of both horizontal and vertical axes). Two il-
lustrative examples for VG are given in Figs. 1(a) and
1(b).

The VG method makes it possible to investigate
the time series in the ‘graph domain’ or the ‘visibi-
lity domain’'®! since the structure of time series is
inherited in the associated VG. Here we attempt to
distinguish chaotic systems from stochastic processes
in the visibility domain. However, it is not an easy
task if we just use the VG technique. In fact, some
information of time series has been lost due to the
simpleness of geometric criteria of the VG method.
Hence, the distinction between the degree distribu-
tions obtained from chaotic series and those derived
from stochastic series sometimes becomes very sub-
tle. In this work, we show that the identification bet-
ween chaotic systems and stochastic processes can be
performed successfully in the visibility domain with
the help of the reordered component (or reordered
series).l'”) A reordered component is generated by a
very simple procedure called component reordering.
Actually, the component reordering procedure can be
implemented as follows: (1) obtaining the first compo-
nent {z{}¥77 = {2,377 and the second component
(x93 = {2}, of the original series {z;}}Y,,
where 7 is the embedding delay. (2) Sorting the first
component {zf}¥ 7 with an ascending order, letting
thew be the new subscript after sorting. (3) Obtaining
the new time series {z;};* ;" with z, = 2§ .

<z + (x5 —xy)
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Time series {2z} ;" derived from the above steps
is called the reordered component since it is actually
a reordered version of the second component. The
component reordering procedure is based on the in-
complete two-dimensional reconstruction of the phase-
space.l'l Notice that the embedding delay 7 is also im-
portant for the component reordering procedure, we
will fix it to 7 = 1, since the structure information
captured by the incomplete reconstruction is conside-
rable under this value.

Magnitude

Magnitude

Fig.1. The VG obtained from (a) logistic series and (b)
Gaussian white noise. There are 16 data points that are
used. The Gaussian white noise is normalized to [0,1]
before deriving the VG.
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Fig. 2. Regular plot of the degree distribution of a VG as-
sociated to a time series from (a) logistic map, (b) Lorenz
system, (c¢) Rdssler system and (d) HyperRossler system.
The value of k represents the degree of the node, and P(k)
indicates the probability that the degree of a node is k.
The squares and circles represent the distribution of the
original time series and the associated reordered compo-
nent, respectively. Here 10° data points are used.

For chaotic series, there is a striking simila-
rity between the incomplete two-dimensional recon-
structed phase-space and the corresponding reorde-
red component.['”] Moreover, the information captu-
red by the incomplete reconstructed phase-space will
be transferred to the reordered component.['” Since

stochastic processes arise from an infinite-dimensional
attractor,l'®! the incomplete reconstructed phase-
space cannot capture any useful information of the
phase-space of stochastic processes.

We will obtain two degree distributions by ap-
plying the VG method to the time series under study
and its reordered component. For the purpose of con-
venience, let @ be the degree distribution derived from
the original series and P be the degree distribution de-
rived from the corresponding reordered component.

Basically, the results of the component reordering
procedure are relatively diverse for different kinds of
series. For a chaotic series, the reordered component is
affected by two aspects. One is obtained from the in-
formation captured by the incomplete reconstruction
of the phase-space and the other is obtained from the
dependence among the data. Thus the reordering pro-
cedure will produce a new time series which is quite
different from the original one and the corresponding
@ and P will be significantly different. As for the se-
ries generated by correlated stochastic processes, the
reordered component is only affected by the correla-
tion among the data, which will lead to small diffe-
rences between the corresponding Q and P. As for
the series generated by uncorrelated stochastic pro-
cesses, e.g., the Gaussian white noise, the reordering
procedure cannot change anything because of the in-
dependence among the data, and () and P are almost
the same. In this work we consider the following four
chaotic systems. (1) The logistic map defined by

Tir1 = rxt(l — xt), (2)

where r = 4 is chosen to make the map operate in the
chaotic regime. (2) The z-coordinate of the Lorenz
system

= oy—ox,
y= rr—y—uzxz, (3)
z2= —bz+xy,

where ¢ = 10, r = 28 and b = 8/3 are chosen to
make the system operate in the chaotic regime. (3)
The z-coordinate of the Rossler system
T= —-Yy—2z,
y= z+ay, (4)
2= b+ z(x—ec),
where a = 0.15, b = 0.2 and ¢ = 10 are chosen to
make the system operate in the chaotic regime. (4)
The x-coordinate of the Hyper—RGssler system:
T= —yY-—2z,
y= z+ay+w
2= bHaz
w= —cz+dw,
where a = 0.25, b =3, ¢ = 0.5, d = 0.05 and d = 0.05
are chosen to make the system operate in the chaotic
regime.
We will deal with the following three stochastic

processes. (1) The Gaussian white noise generated by
the ‘randn.m file’ in the Matlab. (2) The pink noise

(5)
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with f~! power spectral. (3) The AR(1) model is de-
fined as follows:

Ti41 = ngt + E(t), (6)
where £(t) ~ iid and N(0,1).
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Fig. 3. Regular plot of the degree distribution of a VG as-
sociated to (a) Gaussian white noise, (b) 1/f noise and (c)
AR(1). The insets show the enlargement for k € [0,20] to
observe more clearly. The value of k represents the degree
of the node and P(k) indicates the probability that the
degree of a node is k. The squares and circles represent
the distribution of the original time series and the asso-
ciated reordered component, respectively. Here 105 data
points are used.

To investigate the difference between the original
series and its reordered component in the visibility
domain for chaotic systems, in Fig. 2 we plot ) and P
obtained from four chaotic series of 10° data points.
As can be easily observed from Fig.2, there are sig-
nificant differences between ) and P. In the case of
logistic series, the probability of the nodes with small
degrees is decreased in the reordered component com-
pared with that of the original series. For the Lorenz
time series, there is a peak in (), whereas it disappears
in P. The similar results can be found for the Rossler
and the HyperRossler series.

We also plot @ and P obtained from the stochastic
series and the results are shown in Fig. 3. On the one
hand, for the uncorrelated stochastic process (Gaus-
sian white noise), @ and P are almost the same, as can
be seen in Fig.3(a). On the other hand, for correla-
ted stochastic processes (1/f noise and AR(1)), there
are small differences between Q and P, as can be seen
in Figs.3(b) and 3(c). The results shown in Figs. 2
and 3 are in good agreement with the above discussi-
ons and demonstrate that the identification between

chaotic systems, uncorrelated and correlated stochas-
tic processes can be performed well in the visibility
domain.

Although the differences between @ and P can be
perceived by human eyes, it would be better to iden-
tify such differences from a statistical point of view.
To quantify the differences between @ and P, the well-
known Kullback-Leible divergence (KLD),["”) which is
denoted as Dkrp(Q||P), is used in the present study.
For discrete probability distributions @ and P, their
KLD Dxkip(Q||P) is defined as follows:

Q) -
P(i)’

Dxip(Q||P) = ZQ(i)ln

The KLD is a semi-distance (i.e., non-symmetric)
which is zero if and only if Q = P and positive ot-
herwise. It is widely used to measure the similarity
(distance) between two distributions.”) It should be
noted that the KLDs obtained from different degree
distributions are always larger than zero due to the fi-
nite data length. Nevertheless, a relatively large KLD
means that the two distributions are quite different.
As a technical remark, notice that Dki,p(Q||P) diver-
ges if @ and P have different supports (i.e., if Q(7) = 0,
P(i) # 0 or Q(i) # 0, P(i) = 0 for some value 7).
To solve this problem, a common procedurel”!! is to
introduce a bias of order O(1/N?), where N is the
length of the time series. In other words, we replace
all vanishing frequencies with 1/N, and normalize the
frequency histogram appropriately.

To test the validity and effectiveness of the propo-
sed method, Dk1,p(Q||P) obtained from different time
series with diverse data lengths are calculated and the
results are listed in Table 1. It should be pointed out
that these results are derived from 100 initial conditi-
ons and are averaged.

It can be observed from Table 1 that the KLDs for
diverse time series are significantly different. For cha-
otic series, the values of KLDs are always far larger
than zero, which shows the significant differences bet-
ween P and @). For the Gaussian white noise, the va-
lues of KLDs are quite small in all cases, which means
that the corresponding P and @ are almost the same.
As for correlated stochastic processes, the values of
KLDs are larger than those of uncorrelated processes,
but much smaller than those of chaotic series. The
results listed in Table 1 demonstrate that the propo-
sed method is effective to distinguish between chaotic
systems, uncorrelated and correlated stochastic pro-
cesses.

In general, the surrogate data technique is broadly
applied to generate new numerical samples for iden-
tification of deterministic or stochastic processes.”?
The surrogate data share with time series under study
certain properties and also fulfill a certain null hypot-
hesis. Here we also study the performance of the sur-
rogate data in the visibility domain. Let S be the
degree distribution obtained from the surrogate data
of the underlying time series. The KLD Dkyp(Q||S)
obtained from different time series with diverse data
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lengths are calculated and the results are listed in Ta-
ble 2. Note that the results listed in Table 2 are obtai-

ned from 100 surrogate series and are averaged.

Table 1. The KLDs between P and () derived from diverse time series with different data lengths.

Logistic Lorenz Rossler HyperRossler Gaussian 1/f noise AR(1)

N=1x10° 0.1648 0.3354 1.3231 2.1193 3.0314 x 10~4 0.0152 0.0040

N =5x10° 0.1715 0.3344 1.3255 2.0546 6.2955 x 1075 0.0149 0.0036

N=1x10° 0.1743 0.3334 1.3227 2.0619 4.7104 x 10=5 0.0151 0.0034

Table 2. The KLDs between S and @ derived from diverse time series with different data lengths.
Logistic Lorenz Réssler HyperRdossler Gaussian 1/f noise AR(1)

N =1x10° 0.0040 0.0802 0.3723 0.9341 2.6766 x 10~%  4.0611 x 10~*  2.9125 x 104
N =5 x 10° 0.0041 0.0787 0.3770 0.9609 9.1836 x 1075 9.2994 x 1075  8.5574 x 107°
N=1x108 0.0041 0.0784 0.3845 0.9611 3.5122 x 10~° 6.1828 x 10~° 4.1496 x 10~°

From Table 2 we can observe that the values of
KLDs derived from chaotic series are much larger than
those of stochastic processes, which means that the
surrogate data are also effective to distinguish chaotic
systems from stochastic processes. However, the va-
lues of KLDs are relatively small for both correlated
and uncorrelated stochastic processes, which means
that the surrogate data cannot distinguish between
uncorrelated and correlated stochastic processes in the
visibility domain.

Compared with the surrogate data, the reordered
components have several advantages. First, the calcu-
lation process of the reordered component is simpler
than that of surrogate series. Secondly, the reordered
component still preserves the information about the
phase-space of the original series, while the surrogate
data does not. Finally, we can distinguish between
chaotic systems, correlated and uncorrelated processes
by using the reordered component and the VG met-
hod, whereas we only can distinguish between chaotic
systems and stochastic processes when the surrogate
data and the VG technique are used.

In summary, the component reordering procedure
and the VG method have been used to distinguish
between chaotic systems, uncorrelated and correlated
stochastic processes. For chaotic series, the reordered
component is affected not only by the structure in-
formation captured by the incomplete reconstruction
of the phase-space but also by the deterministic de-
pendence among the series. Thus the original series
and its reordered component are quite different in the
visibility domain. As for the uncorrelated stochas-
tic processes, the component reordering procedure has
no effect on them since there is no correlation among
the data. Thus the original series and its correspon-
ding reordered component will show the same degree
distribution. For correlated stochastic processes, the
reordered components are only affected by the corre-
lation among the data. Therefore, the original series
and their reordered components will show small dif-
ferences in the visibility domain. Based on the above
principles, the KLD is used to measure the differences
between the degree distribution obtained from the ori-

ginal series and that derived from the corresponding
reordered component. Moreover, one chaotic map,
three chaotic systems and three stochastic processes
are exploited to test the feasibility and effectiveness
of the proposed method. Numerical results show that
our method is effective to distinguish between cha-
otic systems, uncorrelated and correlated stochastic
processes. The successful identification by using the
component reordering procedure and the VG method
may aid in understanding of the underlying chaotic
systems.
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