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Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation
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We discuss the equivalent form of the Lévy-Leblond equation such that the nilpotent matrices are two-dimensional.
We show that this equation can be obtained in the non-relativistic limit of the (2+1)-dimensional Dirac equation.
Furthermore, we analyze the case with four-dimensional matrices, propose a Hamiltonian for the equation in
(3+1) dimensions, and solve it for a Coulomb potential. The quantized energy levels for the hydrogen atom are
obtained, and the result is consistent with the non-relativistic quantum mechanics.
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An equivalent form of the Lévy-Leblond
equation[1] proposed in Ref. [2] was shown to be con-
sistent with the standard quantum mechanical results.
The Lévy-Leblond equation is the analogue of the Di-
rac equation and describes spin-1/2 particles in the
non-relativistic limit. In Refs. [2,3], it was shown that
the equivalent form of the Lévy-Leblond equation
can be employed to solve the step potential problem
and the finite potential barrier problem. It was also
shown that this equation is the non-relativistic limit
of the Dirac equation and the Pauli Hamiltonian can
be obtained from this equation by requiring it to be
locally invariant.

In this work, we present this equation with two-
dimensional nilpotent matrices and derive it from the
(2+1)-dimensional Dirac equation. We further illus-
trate its applications by solving it for a Coulomb po-
tential in (3+1) dimensions when the nilpotent ma-
trices are 4-dimensional. We show that the known
expression for the quantized energy levels of the hyd-
rogen atom is obtained from this equation. The no-
velty of the approach employed herein is that the
spectrum of the hydrogen atom is derived from the
Lévy-Leblond equation which takes into account the
spin of the particle in the non-relativistic limit.

In the following we introduce the equivalent form
of the equivalent form of the Lévy-Leblond equation
where the nilpotent matrices are 2-dimensional. It
was shown in Refs. [1,2] that the Schrödinger equation
can be derived from a first order equation similar to
the manner in which the Klein–Gordon equation can
be derived from the Dirac equation. The nilpotent
matrices considered in Refs. [1,2] were 4-dimensional.
Next, we consider the nilpotent matrices to be 2-
dimensional. In (1+1) dimensions the equivalent form
of the Lévy-Leblond equation is given by[2]

−𝑖𝜕𝑧𝜓 = (𝑖𝜂𝜕𝑡 + 𝜂�𝑚)𝜓, (1)

where the matrix 𝜂 is a 2×2 nilpotent matrix given by

𝜂 =
𝜎1 − 𝑖𝜎2√

2
=

√
2

(︂
0 0
1 0

)︂
. (2)

Following the procedure presented in Ref. [2], we can
show that the probability current in this case as well
is given by

𝐽 =𝜓�(𝜂 + 𝜂�)𝜓, (3)

𝜌 =𝜓�𝜂�𝜂𝜓, (4)

where 𝜂 + 𝜂� =
√
2𝜎1 and 𝜂�𝜂 = 𝐼 + 𝜎3. In the mo-

mentum space, Eq. (1) is given by

𝑝𝑧 = (𝑖𝜂𝜕𝑡 + 𝜂�𝑚)𝜓. (5)

The eigenvectors of the momentum operator are given
by

𝑒1,2 =

(︃
±
√︁

𝐸
𝑚

1

)︃
, (6)

which correspond to eigenvalues ±𝑝𝑧 = ±
√
2𝐸𝑚, re-

spectively. Note that, in contrast to the equation with
four-dimensional matrices,[2,3] the spin of the particle
is not taken into account by Eq. (1). We have checked
that the step potential problem and the finite step
potential problems solved with Eq. (1) yield the re-
sults that are consistent with the standard quantum
mechanical results as in the case of four-dimensional
matrices.[2,3]

The (2+1)-dimensional version of the Lévy-
Leblond equation for 2×2 matrices, in the momentum
space, is given by

𝜇𝑖𝑝𝑖 = (𝜂𝐸 + 𝜂�𝑚), (7)

where 𝜇1 = 𝐼 and 𝜇2 = 𝑖𝜎3. We can show that Eq. (7)
is the non-relativistic limit of the Dirac equation in
(2+1) dimensions. Consider the following form of
the (2+1)-dimensional Dirac equation in momentum
space,

𝛾𝑖𝑝𝑖 = (𝜎1𝐸 + 𝑖𝜎2𝑚)𝜓, (8)

where 𝛾1 = 𝐼 and 𝛾2 = 𝑖𝜎3. The above equation
yields the dispersion relation of a massive relativistic
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particle in 2D. As shown in Ref. [3], we can substitute
𝜎1 = (𝜂 + 𝜂�)/

√
2 and −𝑖𝜎2 = (𝜂 − 𝜂�)/

√
2 and apply

the non-relativistic limit 𝐸−𝑚 ≃ 𝐸′ and 𝐸+𝑚 ≃ 2𝑚
to obtain Eq. (7) from Eq. (8).

Note also that in the limit 𝑚 = 0, Eq. (8) reduces
to the Dirac equation for massless fermions,

𝐸 = 𝜎𝑖𝑝𝑖, (9)

which, as an example, is employed to describe mas-
sless fermions in condensed matter systems, such as
graphene.

Here we present the Hamiltonian corresponding to
the equivalent form of the Lévy-Leblond equation with
four-dimensional matrices and discuss the constants of
motion. The (3+1)-dimensional version of equation is
given by[2,3]

−𝑖𝛾𝑖𝜕𝑖𝜓 = (𝑖𝜂𝜕𝑡 + 𝜂�𝑚)𝜓, (10)

where 𝛾𝑖 are the Dirac gamma matrices, and 𝜂 =
(𝛾0 + 𝑖𝛾5)/

√
2. One of the issues in obtaining the

Hamiltonian of Eq. (10) is that the matrix 𝜂 is sin-
gular. Recently, a Hamiltonian was proposed[4] and
we adopt a different approach herein. To obtain the
Hamiltonian, we replace 𝜂 → 𝜂′ = 𝜂 − 𝜖𝜂� and ana-
lyze the limit 𝜖→ 0. We thereby obtain the following
Hamiltonian for Eq. (10),

𝐻 = 𝜂′
−1

(−𝑖𝛾𝑖𝜕𝑖 −𝑚𝜂′
�
), (11)

where 𝜂′ = 𝜂 − 𝜖𝜂� and we choose ~ = 𝑐 = 1. In the
limit 𝜖→ 0, two of the eigenvalues of the Hamiltonian
in Eq. (11) are finite as two approach infinities,

𝐸1,2 =
𝑝2

2𝑚
, (12)

𝐸3,4 = − 𝑝2

2𝑚
+
𝑚

𝜖
. (13)

The Hamiltonian yields the two finite energy states in
addition to the negative energy states with an infinite
part. The infinity associated with the negative energy
states can be interpreted as the ‘sea’ of the filled ne-
gative energy states. For the negative energy states
we can define the renormalized energy as

𝐸′
3,4 = 𝐸3,4 −

𝑚

𝜖
= − 𝑝2

2𝑚
.

The Hamiltonian (11) is not Hermitian, while the ei-
genvalues of the operator are real. Interestingly, the
Hamiltonian (11) commutes with the total angular
momentum operator 𝐽 = 𝐿 + 1/2Σ and the opera-
tors 𝐽2, 𝐽𝑧 and 𝐾, i.e.,

[𝐻,𝐽2] = 0,

[𝐻,𝐽𝑧] = 0,

[𝐻,𝐾] = 0,

and the operator 𝐾 also commutes with the total an-
gular momentum operators 𝐽2 and 𝐽𝑧. The operator
𝐾 is given by

𝐾 = 𝑖𝛾5𝛾0(Σ · 𝐽 − 1

2
𝐼), (14)

= 𝑖𝛾5𝛾0(Σ ·𝐿+ 𝐼)

= 𝑖

(︂
0 𝜎 ·𝐿+ 𝐼

−𝜎 ·𝐿− 𝐼 0

)︂
, (15)

where 𝐽 = 𝐿+1/2Σ . We can construct simultaneous
eigenfunctions of the mutually commuting operators
𝐻, 𝐽2, 𝐽𝑧 and 𝐾. The corresponding eigenvalues of
these operators are denoted by 𝐸, 𝑗(𝑗 + 1), 𝑚𝑗 and
−𝜅. We consider the following four component wave
function as the simultaneous eigenfunction of these
operators,

𝜓 =

(︂
𝜓A

𝜓B

)︂
=

(︂
𝑔(𝑟)𝑌

𝑗,𝑚𝑗

𝑙A
(𝜃, 𝜑)

𝑖𝑓(𝑟)𝑌
𝑗,𝑚𝑗

𝑙B
(𝜃, 𝜑)

)︂
≡
(︂
𝑔(𝑟)𝑌A
𝑖𝑓(𝑟)𝑌B

)︂
,
(16)

and for the angular part 𝑌
𝑗,𝑚𝑗

𝑙A,𝑙B
(𝜃, 𝜑) we consider the

case of 𝜃 = 0,[5]

𝑌
𝑗,𝑚𝑗

𝑙=𝑗∓1/2(𝜃 = 0, 𝜑) =

√︂
𝑗 + 1/2

4𝜋

(︂
±𝛿𝑚,1/2

𝛿𝑚,−12

)︂
, (17)

where 𝑙A = 𝑗+1/2 and 𝑙B = 𝑗−1/2. We choose 𝜃 = 0
because the effect of the pseudo-scalar operator 𝜎 ·𝑟/𝑟
on 𝑌

𝑗,𝑚𝑗

𝑙 is independent of 𝜃.[5] The eigenvalues of the
operator 𝐾 are given by

𝐾𝜓 = −𝜅𝜓. (18)

Since 𝐽2 = 𝐾2−1/4𝐼, the eigenvalues of the two ope-
rators are related by 𝜅 = ±(𝑗 + 1/2). Plugging in for
𝐾 yields the following equations

𝜎 ·𝐿𝜓A = − 𝑖𝜅𝜓B − 𝜓A, (19)

𝜎 ·𝐿𝜓B = 𝑖𝜅𝜓A − 𝜓B. (20)

In addition, we have the following eigenvalue equati-
ons

𝐽2𝜓A,B = 𝑗(𝑗 + 1)𝜓A,B, (21)

𝐽𝑧𝜓A,B = 𝑗𝑧𝜓A,B. (22)

Here we study the problem of an electron bound
to a nucleus by a Coulomb potential for a hydrogen-
like atom (for the analysis of the Dirac equation and
further details can be found in Refs. [5–7]). For the
case of a Coulomb potential, the Hamiltonian is given
by

𝐻 = 𝜂′
−1

(−𝑖𝛾𝑖𝜕𝑖 −𝑚𝜂′
�
) + 𝑉 (𝑟), (23)

where 𝑉 (𝑟) = −𝑍𝛼/𝑟, 𝛼 ≈ 1/137 is the fine structure
constant, and 𝑍 is the atomic number of the atom.
Since 𝜓 is an eigenstate of the Hamiltonian,

𝐻𝜓 =𝐸𝜓,

𝜂′
−1

(−𝑖𝛾𝑖𝜕𝑖 −𝑚𝜂′
�
)𝜓 + 𝑉 (𝑟)𝜓 =𝐸𝜓,

(𝛾𝑖𝑝𝑖 −𝑚𝜂′
�
)𝜓 =(𝐸 − 𝑉 (𝑟))𝜂′𝜓,
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where 𝑝𝑖 = −𝑖𝜕𝑖. We obtain

𝛾𝑖𝑝𝑖𝜓 = (𝜂′(𝐸 − 𝑉 (𝑟)) + 𝜂′
�
𝑚)𝜓, (24)

𝜎 · 𝑝
(︂

𝜓B

−𝜓A

)︂
=

1√
2

(︂
𝑎′(𝐸 − 𝑉 +𝑚) 𝑖𝑎(𝐸 − 𝑉 −𝑚)
𝑖𝑎(𝐸 − 𝑉 −𝑚) −𝑎′(𝐸 − 𝑉 +𝑚)

)︂
·
(︂
𝜓A

𝜓B

)︂
, (25)

where 𝑎′ = 1− 𝜖 and 𝑎 = 1 + 𝜖. For brevity, we write

𝜎 · 𝑝
(︂

𝜓B

−𝜓A

)︂
=

(︂
ℎ1 𝑖ℎ2
𝑖ℎ2 −ℎ1

)︂(︂
𝜓A

𝜓B

)︂
, (26)

where

ℎ1(𝑟) = 𝑎′/
√
2(𝐸 − 𝑉 (𝑟) +𝑚), (27)

ℎ2(𝑟) = 𝑎/
√
2(𝐸 − 𝑉 (𝑟)−𝑚). (28)

The operator 𝜎 ·𝑝 can be written in terms of the radial
and angular operators as

𝜎 · 𝑝 =
1

𝑟

𝜎 · 𝑟
𝑟

(︁
− 𝑖𝑟

𝜕

𝜕𝑟
+ 𝑖𝜎 ·𝐿

)︁
. (29)

The operator 𝜎 · 𝑟/𝑟 is a pseudo scalar and changes
the parity of the state, i.e.,

𝜎 · 𝑟
𝑟

𝑌A = −𝑌B, (30)

with (𝜎 · 𝑟/𝑟)2 = 1. We are interested in the effect of

the operator 𝜎 · 𝑟/𝑟 on 𝑌 𝑗,𝑚𝑗

𝑙 , and due to its pseudo-

scalar nature its effect on 𝑌
𝑗,𝑚𝑗

𝑙 is independent of 𝜃.[5]

Thus we choose 𝜃 = 0 for the angular part and em-
ploy the expression given in Eq. (17) for the analysis.
Plugging Eq. (29) in Eq. (26) we obtain the following
two equations

1

𝑟

𝜎 · 𝑟
𝑟

(︁
− 𝑖𝑟

𝜕

𝜕𝑟
+ 𝑖𝜎 ·𝐿

)︁
𝜓B = ℎ1𝜓A + 𝑖ℎ2𝜓B, (31)

−1

𝑟

𝜎 · 𝑟
𝑟

(︁
− 𝑖𝑟

𝜕

𝜕𝑟
+ 𝑖𝜎 ·𝐿

)︁
𝜓A = 𝑖ℎ2𝜓A − ℎ1𝜓B. (32)

Plugging in 𝜓A = 𝑔(𝑟)𝑌A and 𝜓B = 𝑖𝑓(𝑟)𝑌B and using
Eqs. (17), (19), (20), and (30) results in the following
equations

𝜕𝑓

𝜕𝑟
+

1

𝑟
𝑓 + ℎ2𝑓 + ℎ1𝑔 +

𝜅

𝑟
𝑔 = 0, (33)

𝜕𝑔

𝜕𝑟
+

1

𝑟
𝑔 − ℎ2𝑔 − ℎ1𝑓 +

𝜅

𝑟
𝑓 = 0. (34)

The above equations are obtained for the 𝑚 = +1/2
case. The analysis in the following also holds for the
𝑚 = −1/2 case which yields similar results. Plug-
ging in 𝑓(𝑟) = 𝐹 (𝑟)/𝑟 and 𝑔(𝑟) = 𝐺(𝑟)/𝑟 and using
Eqs. (27) and (28) we obtain

𝜕𝐹

𝜕𝑟
+
(︁
𝑞1 +

𝑞2
𝑟

)︁
𝐹 +

(︁
𝑝1 +

𝑝2
𝑟

+
𝜅

𝑟

)︁
𝐺 = 0, (35)

𝜕𝐺

𝜕𝑟
−
(︁
𝑞1 +

𝑞2
𝑟

)︁
𝐺+

(︁
− 𝑝1 −

𝑝2
𝑟

+
𝜅

𝑟

)︁
𝐹 = 0. (36)

Here we have defined the following constants

𝑝1 =
𝑎√
2
(𝐸 +𝑚), 𝑝2 =

𝑎√
2
𝑍𝛼, (37)

𝑞1 =
𝑎′√
2
(𝐸 −𝑚), 𝑞2 =

𝑎′√
2
𝑍𝛼. (38)

We postulate series solutions to Eqs. (35) and (36) in
the form of

𝐹 (𝑟) = 𝑒−𝜆𝑟
∞∑︁

𝑛=0

𝑎𝑛𝑟
𝑠+𝑛, (39)

𝐺(𝑟) = 𝑒−𝜆𝑟
∞∑︁

𝑛=0

𝑏𝑛𝑟
𝑠+𝑛. (40)

Plugging Eqs. (39) and (40) in Eqs. (35) and (36), we
obtain the following equations for the coefficients of
the two series

𝑞2𝑎𝑛+1 + (𝑛+ 1)𝑎𝑛+1 + 𝑞1𝑎𝑛 + 𝑠𝑎𝑛+1

− 𝜆𝑎𝑛 + 𝑝2𝑏𝑛+1 + 𝜅𝑏𝑛+1 + 𝑝1𝑏𝑛 = 0, (41)

− 𝑝2𝑎𝑛+1 + 𝜅𝑎𝑛+1 − 𝑝1𝑎𝑛 − 𝑞2𝑏𝑛+1

+ (𝑛+ 1)𝑏𝑛+1 − 𝑞1𝑏𝑛 + 𝑠𝑏𝑛+1 − 𝜆𝑏𝑛 = 0. (42)

For 𝑛 = −1, the above equations are given as follows:

𝑞1𝑎−1 + (𝑞2 + 𝑠)𝑎0 + 𝑝1𝑏−1 + (𝑝2 + 𝜅)𝑏0 = 𝜆𝑎−1, (43)

𝑝1𝑎−1 + 𝑝2𝑎0 + (𝑞1 + 𝜆)𝑏−1 + 𝑞2𝑏0 = 𝜅𝑎0 + 𝑠𝑏0. (44)

Setting 𝑎−1 = 𝑏−1 = 0 yields

(𝑞2 + 𝑠)𝑎0 + (𝑝2 + 𝑘)𝑏0 = 0, (45)

𝑝2𝑎0 + 𝑞2𝑏0 = 𝜅𝑎0 + 𝑠𝑏0. (46)

The solution to the above equations is

𝑠 = ±
√︁
𝜅2 + 𝑞22 − 𝑝22. (47)

For the wave function to be normalizable we choose
the positive sign of the square root. Furthermore, the
series of 𝐹 (𝑟) and 𝐺(𝑟)must terminate at some 𝑛 = 𝑛′

for the state to be normalizable. This implies that the
coefficients 𝑎𝑖 = 𝑏𝑖 = 0 for 𝑖 = 𝑛′ + 1 and we obtain
the following relation

𝑏𝑛′ =

√︀
𝑞21 − 𝑝21 − 𝑞1

𝑝1
𝑎𝑛′ , (48)

where we have chosen 𝜆 =
√︀
𝑞21 − 𝑝21. Next we solve

the recursion relations (41) and (42) for 𝑛 = 𝑛′ − 1,

(𝑞1 − 𝜆)𝑎𝑛′−1 + (𝑞2 + 𝑛′ + 𝑠)𝑎𝑛′

+ 𝑝1𝑏𝑛′−1 + (𝑝2 + 𝑘)𝑏𝑛′ = 0, (49)

− 𝑝1𝑎𝑛′−1 + (−𝑝2 + 𝑘)𝑎𝑛′ − (𝑞1 + 𝜆)𝑏𝑛′−1

+ (−𝑞2 + 𝑛′ + 𝑠)𝑏𝑛′ = 0. (50)
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Multiplying Eq. (49) by 1/(𝜆− 𝑞1) and Eq. (50) by
1/𝑝1 and subtracting, we obtain the following equa-
tion

𝑝1((𝑞2 + 𝑛′ + 𝑠)𝑎𝑛′ + (𝑝2 + 𝑘)𝑏𝑛′)) + (𝑞1 − 𝜆)((−𝑝2
+ 𝑘)𝑎𝑛′ + (−𝑞2 + 𝑛′ + 𝑠)𝑏𝑛′) = 0. (51)

Taking the limit 𝜖 → 0 (𝑎 = 𝑎′ = 1, 𝑠 = 𝜅 = 𝑗 + 1/2)
and using Eq. (48) and 𝜆 =

√
−2𝐸𝑚 we obtain the

relation for the energy level

𝐸 = −𝑚𝑍
2𝛼2

2𝑛2
, (52)

where 𝑛 = 𝑛′ + 𝑠 = 𝑛′ + 𝑗 + 1/2 = 𝑛′ + 𝑙 + 1 is the
principal quantum number. The above equation is the
known expression for the energy level of a hydrogen-
like atom. For the hydrogen atom 𝑍 = 1. Note that
the parameter 𝑠 has to be positive and since 𝑠 = 𝜅,
only 𝜅 = +(𝑗 + 1/2) is relevant. The functions 𝑓(𝑟)
and 𝑔(𝑟) are therefore given by

𝑓(𝑟) = 𝑒−
√
−2𝐸𝑚𝑟𝑟𝜅−1

∞∑︁
𝑚=0

𝑎𝑚𝑟
𝑚

= 𝑒−
𝑚𝑍𝛼

𝑛 𝑟 𝑟𝑙
∞∑︁

𝑚=0

𝑎𝑚𝑟
𝑚, (53)

𝑔(𝑟) = 𝑒−
√
−2𝐸𝑚𝑟𝑟𝜅−1

∞∑︁
𝑚=0

𝑏𝑚𝑟
𝑠+𝑚

= 𝑒−
𝑚𝑍𝛼

𝑛 𝑟 𝑟𝑙
∞∑︁

𝑚=0

𝑏𝑚𝑟
𝑚. (54)

The ground state wave function (𝑛′ = 0, 𝜅 = 1 and
𝑗 = 1/2) of the Hydrogen atom can be written as

𝜓gd = 𝑁
1√
4𝜋
𝑒−𝑍𝑟/𝑎B

(︂
𝑔(𝑟)𝜒s

−𝑖𝑓(𝑟)𝜎 · 𝑟𝜒s

)︂
, (55)

where 𝑎B = 1/𝛼𝑚 is Bohr’s radius and

𝜎 · 𝑟 =
(︂

cos 𝜃 𝑒−𝑖𝜑 sin 𝜃
𝑒𝑖𝜑 sin 𝜃 − cos 𝜃

)︂
, (56)

𝜒s =

(︂
1
0

)︂
or

(︂
0
1

)︂
, (57)

for the spin quantum number 𝑚s = +1/2 and 𝑚s =
−1/2. For 𝑚s = +1/2 the wave function is given by

𝜓gd = 𝑁
1√
4𝜋
𝑒−𝑍𝑟/𝑎B

⎛⎜⎝
1
0

−𝑖𝑑0 cos 𝜃
−𝑖𝑑0 sin 𝜃𝑒𝑖𝜑

⎞⎟⎠ . (58)

For 𝑚s = −1/2

𝜓gd = 𝑁
1√
4𝜋
𝑒−𝑍𝑟/𝑎B

⎛⎜⎝
0
1

−𝑖𝑑0 sin 𝜃𝑒−𝑖𝜑

𝑖𝑑0 cos 𝜃

⎞⎟⎠ , (59)

where 𝑑0 = 𝑎0/𝑏0 = 2−
√
2𝑍𝛼

2+
√
2𝑍𝛼

. The normalization con-

stant is given by

𝑁 = 2
√
𝜋
(︁ 𝑍
𝑎B

)︁3/2 2 +
√
2𝑍𝛼√

2 + 𝑍2𝛼2
. (60)

In summary, we have presented an equivalent form
of the Lévy-Leblond equation with two-dimensional
nilpotent matrices and have shown that in (2+1) di-
mensions it can be obtained from the Dirac equa-
tion in the non-relativistic limit. In (3+1) dimensi-
ons we also proposed a Hamiltonian for this equation
with four-dimensional nilpotent matrices and showed
that the quantized energy levels of the hydrogen atom
are obtained when the equation is solved for a Cou-
lomb potential. We also derived the ground state
wave function for spin up and down electrons for a
hydrogen-like atom. The novelty of this approach is
that the spin of the electron is taken into account in
the non-relativistic limit to obtain the spectrum of the
hydrogen atom. This analysis further illustrates the
application of this equation which allows for additio-
nal insights into a problem corresponding to the spin
of the particle.

I would like to thank F. Nasir, W. Siegel and M.
U. Rehman for useful discussions and suggestions. We
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