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The generalized master equation for the space-time coupled continuous time random walk is derived analytically,
in which the space-time coupling is considered through the correlated function 𝑔(𝑡) ∼ 𝑡𝛾 , 0 ≤ 𝛾 < 2, and the

probability density function 𝜔(𝑡) of a particle’s waiting time 𝑡 follows a power law form for large 𝑡: 𝜔(𝑡) ∼ 𝑡−(1+𝛼),
0 < 𝛼 < 1. The results indicate that the expressions of the generalized master equation are determined by the
correlation exponent 𝛾 and the long-tailed index 𝛼 of the waiting time. Moreover, the diffusion results obtained
from the generalized master equation are in accordance with the previous known results and the numerical
simulation results.
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The continuous time random walk theory (CTRW)
as one of the various methods to describe anomalous
diffusion is now widely used to explain the anoma-
lous transport phenomena in physical, biological, geo-
logical and economic systems, since it was introduced
by Montroll et al.[1] and Weiss et al.,[2] see Refs. [3–
6] and references therein. The CTRW model is ba-
sed on the idea that the jump length and the waiting
time of a walker between two successive jumps are
drawn from a joint probability density function (PDF)
𝜓(𝑥, 𝑡).[4] The jump length PDF can be deduced from
𝜆(𝑥) =

∫︀∞
0
𝑑𝑡𝜓(𝑥, 𝑡) and the waiting time PDF can

be deduced from 𝜔(𝑡) =
∫︀∞
−∞ 𝑑𝑥𝜓(𝑥, 𝑡), respectively.

Note that the PDF for a particle to be at 𝑥 at 𝑡, deno-
ted by 𝑊 (𝑥, 𝑡), in the Fourier–Laplace space, is given
by

𝑊 (𝑘, 𝑠) =
1− 𝜔(𝑠)

𝑠

1

1− 𝜓(𝑘, 𝑠)
, (1)

where 𝜔(𝑠) is the Laplace form of 𝜔(𝑡), 𝜓(𝑘, 𝑠) and
𝑊 (𝑘, 𝑠) are the Fourier–Laplace transforms of 𝜓(𝑥, 𝑡)
and 𝑊 (𝑥, 𝑡), respectively. If the jump length and wai-
ting time are coupled, it is the coupled CTRW, the
joint PDF is 𝜓(𝑥, 𝑡) = 𝜆(𝑥|𝑡)𝜔(𝑡), where 𝜔(𝑡) is refer-
red to as the PDF of waiting time, and 𝜆(𝑥|𝑡) denotes
the conditional PDF relating jump length and waiting
time. There have been several coupled CTRW approa-
ches proposed including CTRW with correlated jump
length,[7,8] CTRW with correlated waiting time,[7,9]

and space-time coupled CTRW processes, such as the
Lévy walk.[6,10,14−17]

Different from the Lévy walk, we proposed a space-
time coupled CTRW model,[10−12] in which the jump
length is correlated with waiting time through a cor-
related function 𝑔(𝑡) = 𝐶𝛾𝑡

𝛾 , 0 ≤ 𝛾 < 2 is the correla-
tion exponent, and 𝐶𝛾 is a constant with units m2/s𝛾 .
In this coupled model, the PDF of the waiting time fol-
lows a power law form: 𝜔(𝑡) ≃ 𝐶0𝑡

−(1+𝛼), 0 < 𝛼 < 1,

for long time limit 𝑡→ ∞. Here, a constant 𝐶0 is defi-
ned by 𝐶0 = 𝐶/|Γ (−𝛼)| with a scale factor 𝐶, and the
Laplace transform of 𝜔(𝑡) is 𝜔(𝑠) = 1 − 𝐶𝑠𝛼, 𝑠 → 0.
The PDF of the conditional jump length is a Gaussian-

like function:[13] 𝜆(𝑥|𝑡) = 1√
2𝜋𝑔(𝑡)

exp[− 𝑥2

2𝑔(𝑡) ], where

𝑔(𝑡) as the variance is a function of time instead of a
given constant, and the joint PDF of a random parti-
cle is

𝜓(𝑥, 𝑡)=𝜆(𝑥|𝑡)𝜔(𝑡)= 1√︀
2𝜋𝑔(𝑡)

exp
[︁
− 𝑥2

2𝑔(𝑡)

]︁
𝜔(𝑡). (2)
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Fig. 1. (Color online) The white area shows the case
𝛼 > 𝛾 and ⟨𝑥2(𝑡)⟩∼𝑡𝛼, the grey area shows the case 𝛼 < 𝛾
and ⟨𝑥2(𝑡)⟩∼𝑡𝛾 , the blue line denotes the case of 𝛾 = 1,
which is normal diffusion, and the red line denotes the case
of 𝛾 = 2, which is ballistic diffusion.

The diffusion result mean square displacement
(MSD) for this coupled model can be deduced
analytically,[10] the diffusive type and behavior are
determined by the correlation exponent 𝛾, the long-
tailed index 𝛼 of waiting time, and the competition
between 𝛼 and 𝛾. The diffusion results are displayed
in Fig. 1.

However, the generalized master equation (GME)
for this coupled model is still unresolved; apparently,
to understand the coupled CTRW model, it is mea-
ningful to acquire the expression of the GME. Consi-
dering this, in this study, we are dedicated to deducing
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the GME for the coupled CTRW model; the results
obtained in this study show that the diffusion results
MSD ⟨𝑥2(𝑡)⟩ can be directly deduced from the GME,
which are in accordance with the previous known re-
sults.

The joint PDF Eq. (2) in the Fourier–Laplace
space is

𝜓(𝑘, 𝑠) =L {exp[−1

2
𝑘2𝑔(𝑡)]𝜔(𝑡)}

=1− 𝐶𝑠𝛼 − 1

2
𝐶0𝐶𝛾𝑘

2L {𝑡−(1+𝛼−𝛾)}, (3)

Substituting Eq. (3) into Eq. (1), we have

𝑊 (𝑘, 𝑠) =
1

𝑠

1

1 + 1
2𝐶𝛾

1
|Γ(−𝛼)|𝑘

2𝑠−𝛼L {𝑡−(1+𝛼−𝛾)}
.(4)

From Eq. (4) we can see that the following calcula-
tion around Eq. (4) is determined by the calculation
of the term L {𝑡−(1+𝛼−𝛾)}. Considering 0 ≤ 𝛾 < 2
and 0 < 𝛼 < 1, the following calculation can be di-
vided into two cases: the 𝛾 ≥ 𝛼 case and the 𝛾 < 𝛼
case.
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Fig. 2. (Color online) The MSD ⟨𝑥2(𝑡)⟩ varying with time
𝑡 for 𝛾 > 𝛼 with three different cases: 𝛼 = 0.5, 𝛾 = 1.3;
𝛼 = 0.5, 𝛾 = 0.9; and 𝛼 = 0.7, 𝛾 = 1.9. The log-log
plot of ⟨𝑥2(𝑡)⟩ versus 𝑡 corresponding to the three cases
are displayed in (b)–(d), respectively.

For the case of 𝛾 ≥ 𝛼, the joint PDF in the
Fourier–Laplace space Eq. (3) is

𝜓(𝑘, 𝑠) = 1− 𝐶𝑠𝛼 − 1

2
𝐶0𝐶𝛾𝑘

2L {𝑡−(1+𝛼−𝛾)}

=1− 𝐶𝑠𝛼 − 1

2
𝐶0𝐶𝛾Γ (𝛾 − 𝛼)𝑘2𝑠𝛼−𝛾 . (5)

Correspondingly, Eq. (4) turns into

𝑊 (𝑘, 𝑠) =
1

𝑠

1

1 +
𝐶𝛾Γ(𝛾−𝛼)
2|Γ(−𝛼)| 𝑘

2𝑠−𝛾
. (6)

After the inverse Fourier–Laplace transform, then we
obtain

𝜕𝑊 (𝑥, 𝑡)

𝜕𝑡
= 0𝐷𝑡

1−𝛾𝐾1
𝜕2

𝜕𝑥2
𝑊 (𝑥, 𝑡), (7)

which is just the GME for the coupled CTRW mo-
del to describe the diffusive process for the 𝛾 ≥ 𝛼
case, 0𝐷𝑡

1−𝛾 is the Riemann–Liouville operator, and

𝐾1 =
𝐶𝛾Γ(𝛾−𝛼)
2|Γ(−𝛼)| is the diffusion coefficient. Appa-

rently, from Eq. (7),

⟨𝑥2(𝑡)⟩ = 2𝐾1

Γ (1 + 𝛾)
𝑡𝛾 (8)

can be directly deduced.[4] The numerical results of
MSD varying with time for the 𝛾 > 𝛼 case are dis-
played in Fig. 2, in which these three cases 𝛼 = 0.5,
𝛾 = 1.3; 𝛼 = 0.5, 𝛾 = 0.9; and 𝛼 = 0.7, 𝛾 = 1.9 chosen
as the representation are considered, and the linear fit-
ting slopes of the numerical results are 1.3007, 0.9009
and 1.89929, which are all in very good agreement with
the expected values. The numerical results for the
𝛾 = 𝛼 case is displayed in Fig. 3, in which 𝛾 = 𝛼 = 0.5
chosen as the representation is considered, the linear
fitting slope of the numerical results is 0.52248, which
is in very good agreement with the expected value.
In this work, the numerical calculation is to simu-
late the continuous time random-walk trajectories di-
rectly, along with 𝑁 = 105 test particles for the
ensemble. We set the PDF of the waiting time as
𝜔(𝑡) = (10−3)𝛼𝛼𝑡−(1+𝛼)(𝑡 ≥ 10−3) in all the numeri-
cal simulations.
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Fig. 3. (Color online) The MSD ⟨𝑥2(𝑡)⟩ varying with time
𝑡 for 𝛾 = 𝛼 with 𝛼 = 0.5 and 𝛾 = 0.5. The log-log plot of
⟨𝑥2(𝑡)⟩ versus 𝑡 is displayed in the right.

A closed-form solution for Eq. (7) can be found in
terms of the Fox functions,[4] and the results are

𝑊 (𝑥, 𝑡) =
1√

4𝜋𝐾1𝑡𝛾
𝐻2,0

1,2

[︂
𝑥2

4𝐾1𝑡𝛾

⃒⃒⃒⃒
(1− 𝛾/2, 𝛾)

((0, 1), ( 12 , 1))

]︂
.

(9)
For the case of 𝛾 < 𝛼, 0 < 𝛾 < 1 and 0 < 𝛼 < 1 at

the same time, thus 𝛼− 𝛾 + 1 > 1, considering

L {𝐶0𝑡
−(1+𝛼−𝛾)} = 1− 𝐶𝑠𝛼−𝛾 , (10)

where 𝐶0 = 𝐶
|Γ(𝛾−𝛼)| . Thus we obtain

L {𝑡−(1+𝛼−𝛾)} =
|Γ (𝛾 − 𝛼)|

𝐶
(1− 𝐶𝑠𝛼−𝛾). (11)

Then for the case of 𝛾 < 𝛼, the joint PDF in Fourier–
Laplace space Eq. (3) is

𝜓(𝑘, 𝑠) = 1−𝐶𝑠𝛼−𝐶𝛾 |Γ (𝛾 − 𝛼)|
2|Γ (−𝛼)|

𝑘2(1− 𝐶𝑠𝛼−𝛾), (12)
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and

𝑊 (𝑘, 𝑠) =
1

𝑠

1

1 +
𝐶𝛾 |Γ(𝛾−𝛼)|
2𝐶|Γ(−𝛼)| 𝑘

2(𝑠−𝛼 − 𝐶𝑠−𝛾)
. (13)

Now we introduce an intermediate variable 𝑎 = 𝛼− 𝛾
and 0 < 𝑎 < 1 apparently, then we have

𝑊 (𝑘, 𝑠) =
1

𝑠

1

1 +
𝐶𝛾 |Γ(𝛾−𝛼)|
2𝐶|Γ(−𝛼)| 𝑘

2𝑠−𝛾(𝑠−𝑎 − 𝐶)
. (14)

For 𝑡→ ∞, which is 𝑠→ 0 correspondingly, the term
𝑠−𝑎 − 𝐶 → 𝑠−𝑎, therefore

𝑊 (𝑘, 𝑠) =
1

𝑠

1

1 +
𝐶𝛾 |Γ(𝛾−𝛼)|
2𝐶|Γ(−𝛼)| 𝑘

2𝑠−𝛼
. (15)

After the inverse Fourier–Laplace transform, we
obtain

𝜕𝑊 (𝑥, 𝑡)

𝜕𝑡
= 0𝐷𝑡

1−𝛼𝐾2
𝜕2

𝜕𝑥2
𝑊 (𝑥, 𝑡), (16)

which is just the GME for the coupled CTRW model
to describe the diffusive process for the 𝛾 < 𝛼 case.

Here 𝐾2 =
𝐶𝛾 |Γ(𝛾−𝛼)|
2𝐶|Γ(−𝛼)| is the diffusion coefficient. Ap-

parently, from Eq. (16),

⟨𝑥2(𝑡)⟩ = 2𝐾2

Γ (1 + 𝛼)
𝑡𝛼 (17)

can be directly deduced.[4] The numerical results of
MSD varying with time for the 𝛾 < 𝛼 case are dis-
played in Fig. 4, in which these three cases 𝛼 = 0.3,
𝛾 = 0.1; 𝛼 = 0.5, 𝛾 = 0.3; and 𝛼 = 0.7, 𝛾 =
0.1 chosen as the representation are considered, and
the linear fitting slopes of the numerical results are
0.29971, 0.49958 and 0.6995, which are all in very good
agreement with the expected values.
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Fig. 4. (Color online) The MSD ⟨𝑥2(𝑡)⟩ varying with time
𝑡 for 𝛾 < 𝛼 with three different cases: 𝛼 = 0.3, 𝛾 = 0.1;
𝛼 = 0.5, 𝛾 = 0.3; and 𝛼 = 0.7, 𝛾 = 0.1. The log-log
plots of ⟨𝑥2(𝑡)⟩ versus 𝑡 corresponding to the three cases
are displayed in (b)–(d), respectively.
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Again, a closed-form solution for Eq. (16) can be
found in terms of Fox functions,[4] and the results are

𝑊 (𝑥, 𝑡) =
1√

4𝜋𝐾2𝑡𝛼
𝐻2,0

1,2

[︂
𝑥2

4𝐾2𝑡𝛼

⃒⃒⃒⃒
(1− 𝛼/2, 𝛼)

((0, 1), ( 12 , 1))

]︂
.

(18)
Apparently, the diffusion results (8) and (17) dedu-

ced from the GME Eqs. (7) and (16) are in accordance
with the known results by calculating the second par-
tial derivation of the characteristic function.[10] More-
over, the solutions (9) and (18) to Eqs. (7) and (16)
are expressed in terms of the Fox functions, which me-
ans that compared with the much smoother shape for
the Brownian diffusion, the propagator𝑊 (𝑥, 𝑡) should
display a pronounced cusp shape.[4] The numerical re-
sults of𝑊 (𝑥, 𝑡) for both the 𝛾 ≥ 𝛼 case and the 𝛾 < 𝛼
case are displayed in Fig. 5, from which we can see that
the distributions of 𝑊 (𝑥, 𝑡) for different cases display
cusp shapes as expected.

In summary, the GMEs for the space-time coupled
CTRW have been derived analytically, and the con-
crete expressions of the GME have also been determi-
ned by the correlation exponent 𝛾 and the long-tailed
index 𝛼 of the waiting time. The diffusion results
MSD can be directly acquired from the GME (Eqs. (8)
and (17)), which are in accordance with the previous
known results.[10] Furthermore, from the GME we can
obtain that the propagator 𝑊 (𝑥, 𝑡) will display a pro-

nounced cusp shape instead of the smooth Gaussian
shape.
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